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OVERVIEW 
 
The OIL TRANSport Lagrangian model (OILTRANS) is an off-line particle-tracking 
model that runs with the stored predictions of a both a 3D hydrodynamic model, specifically the 
Regional Ocean Modelling System (ROMS) and a wave model, specifically SWAN.  
 
OILTRANS is based on the LTRANS code base which was built to simulate oyster larvae. The 
LTRANS model was designed to predict the movement of particles based on advection, turbulence 
and larval behaviour.  
 
It includes a 4th order Runge-Kutta scheme for particle advection and a random displacement model 
for vertical turbulent particle motion. The original LTRANS code was built by Elizabeth North and 
Zachary Schlag of University of Maryland Center for Environmental Science Horn Point 
Laboratory. It was written in Fortran 90 and is designed to track the trajectories of particles in three 
dimensions 
 
Components of LTRANS have been in development since 2002 and are described in the following 
publications: North et al. 2005, North et al. 2006a, North et al. 2006b, and North et al. 2008. 
 
The LTRANS code was adapted to simulate the mechanical spreading and physical fate processes 
of oil particles. OILTRANS expanded the processes governing particle transport to include; 
mechanical spreading of oil slicks, wind drift, stokes drift, langmuir circulation and shoreline 
beaching. 
 
The code has an external and internal time step and boundary condition algorithms that keep 
particles from leaving the model domain. The external time step is the time step of hydrodynamic 
model output (e.g., 1hr). The internal time step is the time interval during which particle movement 
is calculated (e.g., 120 sec). The internal time step is smaller than the external time step so that 
particles do not move in large jumps that could cause inconsistencies between predictions of the 
hydrodynamic model and the particle tracking model.  
 
At each internal time step of the transport model, particle motion is calculated as the sum of 
movement due to advection, turbulence, wind drift, stokes drift, mechanical spreading, langmuir 
circulation along with the original LTRANS options for larval behaviour. The model contains sub-
models for each of these components. The transport and behaviour routines can be turned off so that 
particle movement is based solely on advection.  
 

INTERPOLATION SCHEME 
 
The ROMS and SWAN model predictions (stored in NetCDF format) are read in and interpolated in 
space and time to the particle location. The first step in the process of interpolating the wave and 
water properties (e.g., current velocities, salinity, temperature, sea surface height, and vertical and 
horizontal diffusivities, wave period, wave height, wind speed) to the particle location is to 
determine the grid cell in which the particle is located. For this, the ‘crossings’ point-in-polygon 
approach coupled with a search algorithm for computational efficiency is used.  
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Once the particle is located in a grid cell, water properties are interpolated in space to the particle 
location. All water properties are interpolated from the native ROMS and SWAN grid points (i.e., u 
grid points are used to calculate u-velocity at the particle location, v grid points are used for v-
velocity, and rho grid points are used for sea surface height, w-velocity, salinity, and diffusivity 
calculations).  
 
For two-dimensional water properties (e.g., sea surface height, water depth, wave height, etc) 
bilinear interpolation is used. For three-dimensional water properties (e.g., current velocities, 
diffusivities, salinity), a water-column profile scheme is applied (North et al. 2006a). In this 
scheme, values are interpolated along each s-level to create a vertical profile of values at the x-y 
particle location. 
 
A tension spline curve is then fit to the vertical profile and used to estimate the water property at the 
particle location. The interpolation scheme was adapted from North et al. (2006a), streamlined to 
increase computational speed, and enhanced to handle model domains with irregular bottoms and 
non-rectangular grid geometries. It should be noted that this interpolation scheme likely assumes 
that the underlying hydrodynamic model grid is orthogonal (Rich Signell, pers. comm.). 
 
Although there are several available methods for interpolating to the particle location (e.g., linear 
interpolation, cubic splines) a sophisticated tension spline curve fitting routine is used. Both cubic 
and simple tension splines cause ‘offshoots’. Offshoots occur when the interpolated line does not 
preserve the monotonicity and concavity of the original data.  
 
For particle tracking, it is necessary to interpolate in time as well as space because the duration 
between successive outputs of the hydrodynamic models (i.e., the external time step) is longer than 
the time step of particle motion (i.e., the internal time step). To do this, water properties are 
estimated at the particle location (as above) at three time points (previous, current and future) that 
correspond to the hydrodynamic model output. Then a polynomial curve is fit to the water 
properties at three time points and used to calculate the water properties at the time of particle 
motion (i.e. for the internal time step).  
 
 
Advection sub-model.  
 
A 4th order Runge-Kutta scheme in space and time is used to calculate particle movement due to 
advection. This scheme solves for the u-, v-, and w- current velocities (representing the x-, y-, and z-
directions) at the particle location using an iterative process that incorporates velocities at previous 
and future times to provide the most robust estimate of the trajectory of particle motion in water 
bodies with complex fronts and eddy fields like Chesapeake Bay.  
 
Current velocities (m s-1) provided by the Runge-Kutta scheme are multiplied by the duration of the 
internal time step (

���
) to calculate the displacement of the particle in each component direction. 

Displacements (m) are then added to the original location of the particle (xn, yn, zn) in order to 
calculate the new location of the particle (xn+1, yn+1, 
zn+1): 
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The u and v current velocities are separated into north and east component directions before particle 
motion is estimated. Law-of-the-wall (a log layer calculation) is applied to the current velocities 
within one s-level of bottom to simulate reduction in current velocities near bottom. 
 
NOTE: 
The LTRANS model was designed to maintain fidelity with hydrodynamic model predictions. All 
interpolation occurs from the original staggered grid of the u, v, and rho grid points directly to the 
particle location. In addition, horizontal interpolation occurs along s-levels in an attempt to follow 
the structure of the hydrodynamic model in regions of changing bathymetry. These interpolation 
schemes may be costly in computation time compared to less accurate schemes; the benefits have 
not been quantified. The LTRANS model was developed to simulate oyster larvae in Chesapeake 
Bay, a region with complex bathymetry and horizontal and vertical current shears. It is not known 
whether the LTRANS interpolation schemes would be appropriate in other systems, and, if so, in 
what conditions they should be used.  
 

INPUT FILES 

Model Grid and bathymetry 
 
The OILTRANS model uses hydrodynamic data from ROMS NetCDF files. It uses two files, a 
bathymetry grid file that contains information about the model grid, and the output files that contain 
the hydrodynamic model predictions.  
 
The following variables should be in the bathymetry grid file that contains the ROMS model grid 
information: 
 
angle   angle between x-coordinate and true east direction 
h     depths of rho nodes 
mask_rho  rho node mask value 
mask_u  u node mask value 
mask_v   v node mask value 
lon_rho  longitude coordinates of rho nodes 
lon _u   longitude coordinates of u nodes 
lon _v   longitude coordinates of v nodes 
lat_rho   latitude coordinates of rho nodes 
lat _u   latitude coordinates of u nodes 
lat _v   latitude coordinates of v nodes 
 
The main structure of OILTRANS is based on the assignment of a unique number to each ROMS 
model grid point (referred to as a node). Each grid cell (referred to as an ‘element’) is comprised of 
a set of 4 nodes. After the hydrodynamic data is read from the NetCDF files into the variables listed 
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above, it is reorganized so that each data point is assigned the appropriate node number. This is 
done in the subroutine initGrid in the Hydrodynamic Module after the grid variables are read in. 
 

Model archived hydrodynamics 
 
The following variables should be in the ROMS output files that contain the archived hydrodynamic 
model predictions. OILTRANS assumes that the sequential ROMS output files contain the same 
number of time steps in each file (e.g., if the first file contains predictions at 24 discrete times, then 
all files should contain predictions at 24 discrete times). 
 
Note: Variables Sc_r, Sc_w, Cs_r, and Cs_w must be in the first output file used by OILTRANS. 
The other variables should be in all of the output files used by OILTRANS. 
 
Sc_r   s coordinate on rho grid 
Cs_r   Cs value on rho grid 
Sc_w  s coordinate on w-grid 
Cs_w  Cs value on w-grid 
 
Aks   vertical diffusivity of salinity at rho nodes 
salt   rho node salinity 
temp  rho node temperature 
u    u-direction velocity 
v    v-direction velocity 
w    w-direction velocity 
dens    rho node density 
zeta   zeta levels at rho nodes 
 

SWAN input files 
 
The OILTRANS model has the option to use wind and wave data from SWAN model NetCDF 
files. OILTRANS assumes that the sequential SWAN output files contain the same number of time 
steps in each file (e.g., if the first file contains predictions at 24 discrete times, then all files should 
contain predictions at 24 discrete times). The following variables should be in the SWAN output 
files that contain the archived wind and wave model predictions.  
 
Note: The SWAN model must generate model predictions on the same model grid as the ROMS 
model. 
 
Hs   significant wave height 
tm_01  mean wave period 
u10   10m wind speed U component 
v10   10m wind speed V component 
Pd   peak wave direction 
Pwl   peak wave length 
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Particle locations input file 

LTRANS:  
 
The particle locations are read in from a .csv file which contains either three or four columns: 
longitude, latitude, depth (in meters) and, if settlement is turned on, the id of the habitat polygon the 
particle starts on. This file must have at least as many rows as the number of particles in the 
parameter numpar. All of the particle start locations should be within the model boundaries.  
 

OILTRANS:  
 
The particle locations are read in from a .csv file which contains four columns: longitude, latitude, 
depth (in meters) and time of spill. The first entry in the .csv file defines the number of spill 
locations to be simulated. The file must have as many subsequent rows as the number of spill 
locations to be modelled (not the number of particles in the simulation). The particle start locations 
should be within the model boundaries.  

Model parameters input file 
 
One input file, OILTRANS_data, contains the parameters that are used to adapt OILTRANS to 
different ROMS hydrodynamic model domains, change particle attributes (e.g., turn on/off 
behaviour, oil module, etc), and set input/output file paths. All initialization variables are placed in 
this file so that the code does not need to be modified to run OILTRANS in different model 
domains or with different particle characteristics. Everything that the user may need to change can 
be found in OILTRANS_data, (see Appendix I). 
 

MODEL EXECUTION 
 
OILTRANS.f90 contains the main structure of the particle-tracking program. It executes the 
external time step, internal time step, and particle loops, advects particles, and writes output.  
 
It calls the modules that read in hydrodynamic model information, move particles due to turbulence 
and (larval or oil) behaviour, weathers oil spills, test if particles are in habitat polygons, and apply 
boundary conditions to keep particles in the model domain.  
 

Model Initialisation 
 
Before the iterative loops that comprise the heart of the particle tracking model structure, 
OILTRANS.f90 starts with an initialisation subroutine called ini_LTRANS.  
 
Subroutine getParams reads in the OILTRANS_data input file, making the  
parameters declared within available to all the other modules 
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subroutine init_genrand is called to initialise the Mersenne Twister random number generator, 
creating random numbers between 0 and 1 from a uniform distribution. 
 
Several time stepping variables are calculated, variable arrays are initialized, and the particle 
locations are read in and their latitude and longitude coordinates are converted to meters.  
 
If the OIL model is activated OILTRANS.f90 calls the subroutine initOilModel.that calculates the 
density and viscosity of the oil at the moment of the spill incident. 
 
Subroutine initGrid is used to read the latitude and longitude coordinates of the nodes in the rho, u, 
and v grids, depth at the rho nodes, the angle between x coordinate and true east, masks of the rho, 
u, and v grid nodes that specify whether the nodes are on land or in water, and the variables 
necessary to calculate s-levels. It also assigns unique identification numbers to rho-, u- and v 
elements to create the OILTRANS grid element structure.  
 
In addition, information about the ROMS hydrodynamic model domain is read in and used to create 
the OILTRANS model domain and grid element structure. In OILTRANS, an element is defined as 
a set of four adjacent rho, u or v nodes that form a quadrilateral. Each element is assigned a unique 
identification number. These numbers are used to store previous, and efficiently search for new, 
particle locations.  
 
A number of subroutines are called to initialize the OILTRANS domain and element structure. 
 
Subroutine createBounds defines the OILTRANS model boundaries based on the land/sea masking 
of the rho grid.  
 
Subroutine initBehave is used to initialize the matrices that contain information on particle 
attributes for the Behavior Module of the original LTRANS code.  
 
The code then does a series of checks on each particle to ensure it is within the model boundaries, 
and not within an island element of the model.  
 
Finally, subroutine initHydro reads in the initial ROMS hydrodynamic data (u-, v-, and w-
velocities, salinity, temperature, zeta, and vertical diffusivity) for the back, center, and forward time 
steps from the first sequential ROMS archived output file. 
 
If the WindsWavesModel parameter is activated in the OILTRANS_data input file, the initial 
SWAN data (significant wave height, mean wave period, peak wave direction, peak wave length, 
10m U and V wind speed components) for the back, centre, and forward time steps from the first 
SWAN sequential output file. 
 
Control then passes back to the main OILTRANS.f90 code which calls the run_LTRANS 
subroutine, controlling the external and internal timestep loops, particle tracking and oil weathering 
procedures. 
 

External Timestep Loop 
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This loop which iterates for each external time step contains the majority of the execution code of 
the program. The execution of the external time step loop can be broken down into three major 
sections: updating the hydrodynamic data, the internal time step loop, and the output (print) section. 
The internal time step loop will be covered in the following section.  
 
The main purpose of the external time step loop is to update hydrodynamic data. The hydrodynamic 
data comes from ROMS NetCDF files and optionally SWAN netCDF files which contain 
information about u velocity, v velocity, w velocity, salinity, sea surface height, wave properties 
and wind speeds 
 
To calculate water properties at the particle location, OILTRANS uses hydrodynamic model output 
from the current (‘center’) time step, the previous (‘back’) time step, and the future (‘forward’) time 
step. On the first iteration of the external time step the attributes of the back, center, and forward 
times are taken directly from the first netcdf file. However, on every subsequent iteration the back 
and center time steps’ attributes are transferred from the previous center and forward time steps, 
respectively, and data from the netcdf files is only read in for the forward time step. 
 
The duration of the external time step (in seconds) is set in OILTRANS_data with the 
variable dt. The value dt should be equal to the duration between the instantaneous snapshots of 
data in the hydrodynamic input files. For example, if one netcdf file contains 24 hrs of data stored at 
1 hour intervals, then the external time step is 1 hour  
 
The variable tdim found in OILTRANS_data should be initialized to the total number of external 
time steps within each hydrodynamic model output. The variable stepT, the total number of 
external time steps in the model, is seconds divided by dt, where seconds is the total number of 
seconds that the model will run. 
 
The external time step consists of a loop from 1 to stepT using the variable p to iterate. The first 
two iterations use the same data, so the hydrodynamic data is initialized before the first iteration by 
calling subroutine initHydro and is not updated again until p is greater than 2.  
 
On all other iterations, the program updates hydrodynamic data by calling subroutine 
updateHydro. In updateHydro, the ‘forward’ variables are updated with the most recent 
hydrodynamic data and the ‘back’ and ‘center’ variables are replaced with the ‘center’ and 
‘forward’ variables from the previous time step, respectively. 
 
Following the update hydrodynamic data section is a short section used to update the external time 
step values in ex(). The variable ex() is an array of three values used to store the back time, center 
time, and forward time in seconds. These values are calculated by using multiples of dt, the size of 
the external time step in seconds. 
 

Internal Timestep Loop 
 
The internal time step loop is the loop in which the particle tracking and oil weathering occurs. The 
internal time step is shorter than the external time step to allow particles to move in smaller 
intervals than the hydrodynamic model output intervals. Within each iteration of the internal time 
step loop, the time and internal time step values, ix(), are updated.  



 
 

 

Development of OILTRANS Model code  
 

 

 
The OILTRANS model checks whether the correct ix() time has been reached to activate the oil 
spill. If so the model calls subroutine InitialArea which calculates the initial area of the spill after 
the gravity spreading phase has ceased, and the PhaseTime after which the gravity phase will have 
ceased.  
 
After this, model goes into a loop from 1 to numpar through each particle, randomly distributing 
oil particles using a normal distribution throughout the theoretical Fay area of spill. 
 
The model then checks if PhaseTime has been reached, in which case the oil weathering processes 
(evaporation, emulsification, dispersion, dissolution, density, viscosity, etc) are called depending on 
the options chosen in OILTRANS_data input file. 
 
Once this is complete, the program enters the particle transport loop from 1 to numpar where 
particle movement due to advection, turbulence, winds and waves, is calculated over the time step. 
Then particle locations are updated. These events occur every iteration of the internal time step. 
 
The duration of the internal time step, idt, must be set in OILTRANS_data. The variable stepIT 
(the number of internal time steps per external time step) is then initialized as the value of dt (the 
external time step) divided by idt (the internal time step). 
 
The internal time step is a loop that iterates from 1 to stepIT using the variable it. The values of 
ix(), the internal time step values, are calculated. Ix() is an array with three 
values, so it can hold the internal ‘back’, ‘center’, and ‘forward’ times. 
 

Model Termination 
 
Once the internal and external timestep loops have been completed, control passes back to the 
OILTRANS.f90 program which calls the subroutine fin_LTRANS. The purpose of this subroutine 
is to write the final positions and status to the final output file, de-allocate local variables and 
module level variables and calculate model run time and output to screen before exiting.  
 

Oil Module 
 
The oil module was developed to predict the evolution and behaviour of the processes (transport, 
spreading and weathering) of oil spilled in the water. The processes included in the oil module are: 
spreading, evaporation, emulsification, dispersion, dissolution and oil beaching, along with the 
transport processes of wind drift, stokes drift and langmuir circulation. 
 
The oil weathering module uses the ROMS archived hydrodynamics and optionally, the SWAN 
archived wind and wave fields. The trajectory of the oil slick is computed assuming that the oil can 
be idealised as a number of particles that independently move in the water. Except for oil spreading, 
dispersion and beaching, all weathering processes and properties are assumed uniform for all oil 
particles. Additionally, it is assumed that the temperature of the oil is the same as the ambient water 
temperature. 
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Different alternative methods were coded for the prediction of the oil spreading and evaporation 
processes. There is therefore more than one way of simulating the same process.  
 
Weathering and movement processes of the oil slick can interact, with the weathering strongly 
influencing how the oil is moved. Weathering processes occur at very different rates, but all begin 
immediately after oil is spilled. Weathering rates are not constant throughout the duration of the 
spill, and are usually highest immediately after the spill. All weathering and transport processes are 
strongly dependant on the type of oil, the volume of oil spilled and the weather conditions during a 
spill event.  
 
The order of importance of the various weathering processes are; evaporation, emulsification, 
dispersion, dissolution, photo-oxidation, sedimentation, and biodegradation. Only the first four 
weathering processes are included in the current OILTRANS model, as they account for 99% of the 
reduction in oil spill volume during the first week after a spill. 
 

Spreading 
 
Oil spreads horizontally over the water surface even in the complete absence of wind or water 
currents. The spreading is due to the force of gravity and the interfacial tension between oil and 
water. The oil viscosity opposes these forces. Usually within the first hour, the effect of gravity on 
the spreading of the oil slick is greatly reduced and the spreading of the slick is controlled based on 
the balance between the viscosity of the oil and the oil-water interfacial tension.  
 
Most attempts at understanding the spreading process have produced formulas that only roughly 
approximate the actual spill results, as the spreading process is a complex interaction between the 
physical properties of the oil and the environmental state of the sea surface.  
 
The most widely used formulations for determining the spread of oil on the water’s surface are 
modified versions of the now classical equation proposed by Fay, 1969.   
 
The current OILTRANS model incorporates four different formulations for the surface spreading of 
the oil slick. The first three formulations, ADIOS2, MOHID2 and CONCAW are similar 
implementations of a Fay algorithm, but with different parameterisations for radial spreading.  
 
The fourth formulation, that of Lehr as used in OILPOL, attempts to account for the elongated 
spreading of the oil slick in a downwind direction using a modified version of the Fay spreading 
formulations.  
 
Fay broke the spreading process into three phases; the first phase in which only gravity and inertia 
forces are important, the second phase in which gravity and viscous forces dominate and a final 
phase in which surface tension is balanced by viscous forces.  
 

Initial Area of Spill 
 
ADIOS2 & MOHID2 
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The first stage allows the oil to spread due to its gravitational potential and occurs rapidly (<1hr), 
even for large spill. The time to the end of this stage, PhaseTime, is calculated by MOHID2 and 
ADIOS2 as: 
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 where:  k1,k2 = empirical coefficients whose value depend on the researcher  
    Vo = volume of oil spilled 
    �w = kinematic viscosity of water  
    g = gravitational acceleration  
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OILTRANS assumes that during the gravity spreading phase none of the weathering processes are 
taking place. In essence, PhaseTime, to, is the starting time of the oil spill model. The InitialArea, 
Ao, at the end of this gravity spreading phase is calculated by ADIOS2 and MOHID2 to be: 
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For MOHID2 formulations, k1 & k2 = 1.14 & 1.45 respectively 
For ADIOS2 formulations, k1 & k2 = 1.53 & 1.21 respectively 
 
CONCAW 
 
For the CONCAW implementation of the Fay formulation the spill areas for both the gravity 
spreading phase and the viscous spreading phase are calculated over time.  
 
Transition from the gravity spreading phase to the viscous spreading phase is assumed to occur 
when the formulae predict spills of the same area. The time at which both formulae predict spills of 
the same area is PhaseTime. The method is presented below: 
 

Do While Area1 <= Area 2 
  tgVArea ..14.1.1 2 ∆= π    = area of gravity spreading  
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π   = area of viscous spreading  

  t = t +10    increment time (in seconds) 
End Do 

 
PhaseTime = t 
InitialArea = Area2 

 
OILPOL 
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The OILPOL model does not use the Fay spreading methodology for determining the time until 
gravity spreading phase is complete, rather, the InitialArea, Ao, of the spill is calculated as: 
 

( ) .81.2.
2

oo VA π=  

Spreading of Spill 
 
ADIOS2 & MOHID2 
 
Both methods use the second phase of the Fay formulas, the so-called gravity viscous spreading. 
Fay predicted the area, At, of the slick over time to be described by: 
 

3
1

2
32

2
2 �

�

�

�

�
�

�

� ∆
=

w

o
t

tgV
kA

υ
π  

 
Both methods approximate the Fay spreading with a diffusion process, where the diffusion 
coefficients, Dx & Dy are given by: 
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In addition, in ADIOS2, a second spreading process designed to represent eddy diffusion of surface 
waters is added to the Fay diffusion coefficients. Based on experimental results, a time dependant 
diffusion parameter best represents the empirical results. The diffusion parameter, Deddy is 
represented as: 
 

Deddy = 0.033 t 0.16 
 
The diffusion coefficients are then converted into uniformly distributed random velocities, ur & vr 
in the range [–Ur, Ur] and [-Vr, Vr] for each particle as detailed below.  
 
The relationship between the diffusion coefficients and the velocity ranges [–Ur, Ur] and [-Vr, Vr] is 
expressed as: 
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 where: �t = timestep interval 
 
Random velocities, ur & vr, (with a uniform distribution) inside the velocity ranges [–Ur, Ur] and [-
Vr, Vr] are then assigned to each particle in the following way; 
 

( ) rr URRu .2cos 21 π=  
( ) rr VRRv .2sin 21 π=  
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 where: R1 & R2 are randomly generated numbers between 0 and 1. 
 
An ‘origin’ particle which is not included in the Fay spreading processes is used as a reference point 
around which to diffuse all other oil particles with the random velocities [-ur, ur], [-vr, vr]  at each 
time step by: 
 

Px = Pox + (±)ur 

Py = Poy + (±)vr 

 

 where :  Px = particle x location 
    Py = particle y location 
    Pox = origin particle x location 
    Poy = origin particle y location 
 
The ‘origin’ particle is free to advected by water currents, wind and stokes drift, thereby tracking 
the centroid of the spill. 
 
 
CONCAW 
 
The process used in the CONCAW methodology is to calculate the fractional increase in the radius 
of the theoretical area of the oil slick, CoefR, from one time step to another as: 
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 where: AreaT = Area of slick at current timestep 
  AreaT-1 = Area of slick at previous timestep 
 
The fractional increase in the radius of the slick is used to update each particles location with 
respect to the ‘origin’ particle location by: 
 

PxT = PoxT + [(PxT-1 - PoxT-1) * CoefR] 
PyT = PoyT + [(PyT-1 - PoyT-1) * CoefR] 

 
 where : Px = particle x location 
    Py = particle y location 
    Pox = origin particle x location 
    Poy = origin particle y location  
    T = current timestep 
    T-1 = previous timestep  
 
 
OILPOL 
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In the OILPOL methodology the slick is assumed to spread as an ellipse with the major axis in the 
direction of the wind. The length of the minor axis, Q after the spreading starts is given by a Fay-
like formula but with modified coefficients that were obtained by fitting to observed data, as: 
 

( ) 4
1

3
1

13.1 tVQ ∆=  
 
The downwind axis of the ellipse, R, is given by: 
 

4
3

3
4

0034.0 tWQR +=  
 
 where: W = wind speed (m/s) 
 
The area of the slick, At at time t is therefore: 
 

QRA π4
1=  

 
The process used in the OILPOL methodology is similar to that of the CONCAW methodology, 
namely, to calculate the fractional increase in the radius of the major and minor axes of the oil slick, 
CoefR & CoefQ respectively, from one time step to the next. The fractional increase in the major 
and minor axes of the slick are then used to update each particles location with respect to the 
‘origin’ particle location in a manner similar to that outlined above in the CONCAW methodology. 
 
Note: Currently OILTRANS assumes a constant wind direction for determining the spreading of 
the slick using this methodology. 
 

Evaporation 
 
In OILTRANS the evaporation process can be calculated using two different methods; one, 
evaporative exposure, proposed by Stiver and Mackay 1984, and one, a simplified empirical 
formulation, proposed by Fingas 1998. 
 
Another method, the pseudo-component method of Jones 1997, as used by ADIOS2 requires a 
considerable amount of input data in relation to mean vapour pressure, solubility and molecular 
weight of each pseudo-component of the oil. Jones compared the pseudo-component approach to 
that of Fingas, and Stiver & Mackay and found for equivalent conditions, the pseudo-component 
method gave similar results to Fingas, and only slightly underpredicted results from Stiver & 
Mackay. Given the correlation between the pseudo-component method and the Fingas, and Stiver & 
Mackay methods, only the former methods have been encoded as they require less detailed 
information on oil type and constituents. 
 

Stiver & Mackay 
 
The evaporative exposure is given by the formula: 
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( )eGo
o

tee VfTT
TV

AK
dt

dVf
+−= 3.10

3.6exp(  

 
 where: Vfe = volume fraction of evaporated oil 
    Ke = mass transfer coefficient   

    At = Area of slick at time t. 
    Vo = volume of spill 
    T = oil temperature (assumed equal to water temperature) 
    To = initial boiling point of the oil 
    Tg = distillation curve gradient 
 
The mass transfer coefficient, Ke is given by: Ke = 1.5e-3 W0.78 
 
The initial boiling point and the distillation curve gradient of the oil are determined from the API 
density of the oil according to the following relationship (for crude oil) 
 

To = 532.98 – 3.1295 API 
Tg = 985.62 – 13.597 API 

 
Implementation of the evaporative exposure formulation in the OILTRANS code takes the form: 
 

( )dtVfTT
TV

AK
dVf eGo

o

te
e +−= 3.10

3.6exp(  

 
with the volume fraction of oil evaporated at each timestep being calculated. After each timestep the 
value of Fe (total volume fraction of oil evaporated) is updated by dFe.  
 
The mass fraction of oil evaporated, Mfe = Vfe .�oil 
 

Fingas 
 
The other option to calculate the evaporation of oil was proposed by Fingas and is based on the 
variables of time and temperature. Fingas determined specific empirical equations for a wide variety 
of oil types of the form: 
 

)ln()(% tTM e βα +=  
 
 where: %Me is the percentage (by weight) of evaporated oil 
    �,� are empirical constants depending on oil type 
    T is oil temperature (assumed equal to water temperature) 
    t is time after spill in minutes 
 
From the range of experiments conducted, Fingas proposed the following general equation: 
 

%Me = [0.165(%D) + 0.045(T-15)]ln(t) 
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 where: %D is the percentage by weight distilled at 180oC. 
 
The volume fraction of oil evaporated, %Ve = %Me / �oil 
 

Emulsification 
 
Emulsification is the process by which water droplets are dispersed into the oil slick. When water-
in-oil emulsions form the physical properties and characteristics of the oil slick change 
dramatically.  
 
Stable emulsions typically contain 60%-90% water, expanding the volume of the oil slick by 2 to 5 
times the original volume. Most significantly, the viscosity of the oil changes from typically a few 
hundred mPas to about 100,000 mPas. 
 
The formulation for the formation of water-in-oil emulsions in the OILTRANS code is based on the 
most recent work of Fingas, 2011, and is based on the oil density, viscosity, asphaltene, resin and 
saturates content of the oil.  
 
The formulation defines the class of emulsion that may be formed; stable, mesostable, entrained or 
unstable, and assigns values to increases in viscosity based on the class of emulsion formed. 
 
 
The stability class of emulsion that would be formed is calculated as follows: 
 
Stability Class =  12.3 + 0.259St – 1.601Rt – 17.2(A/Rt)  

 – 0.50Vt3 + 0.002Rt3 + 0.001At3 + 8.51(A/Rt)3  
 – 1.12ln(Vt) + 0.7ln(Rt) + 2.97ln(A/Rt)  
 + 6e-8(Exp(Vt))2 – 1.96(Exp(A/Rt))2  
 – 4e-6log(Dt)/(Dt)2 – 1.5e-4log(A/Rt)/(A/Rt)2 

 
 where: St = transformed saturate content 
    Rt = transformed resin content 
    A/Rt = transformed asphaltene/resin ratio 
    Vt = transformed natural logarithm of viscosity 
    At = transformed asphaltene content 
    Dt = transformed exponential of the oil density 
 
The values of Stability Class assigned to each class of emulsion are given in the table below: 
 
Table 1: Conditions for Emulsion Type Calculations 
Calculated Stability Class 
minimum maximum 

Conditions State Error (%) 

2.2 15  Stable 0 
-12 -0.7  Mesostable 9 

density >0.96 -18.3 -9.1 
viscosity >6000 

Entrained 7 

-7.1 -39.1 density <0.85 or >1.0 Unstable 10 
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viscosity <100 or >800000 
asphaltenes or resins <1% 

 
The viscosity of the resulting emulsion can be taken as the average of the types at a given time as 
shown in the table below: 
 
 
 
Table 2: Viscosity Increase from Starting Oil Viscosity 

Viscosity Increase On Emulsion Type First Day Week Year 
Entrained 1.9 1.9 2.1 
Mesostable 7.2 11 32 
Stable 405 1054 991 
Unstable 0.99 1.0 1.0 
 
The kinetics of emulsion formation have also been studied by Fingas 2011, and data are available to 
compute the time to formation of the various emulsion types.  
 
Application of the equations in the table below provide the time to formation of a particular water-
in-oil emulsion, for a given wave height. 
 
 
Table 3: Time to Formation predictor from Wave Height 

Equation Y = A + B / X1.5 Resulting Equation 
Predictor A B R2 
Stable 27.1 7520 0.51 
Mesostable 47 49100 0.95 
Entrained 30.8 18300 0.94 
X = wave height in cm 
Y = time to formation in minutes 
 

Dispersion 
 
Dispersion, or entrainment, occurs when fine droplets of oil are transferred into the water column 
by wave action or turbulence. Large droplets (>70�m) tend to rise and will not stay in the water 
column for more than a few seconds. 
 
The dispersion process is based on the classic method of Delvigne and Sweeney 1988 who 
developed a relationship for entrainment rate, Qd, as a function of droplet size and oil viscosity, as: 
 

dSFdDCQ dd ∆= 7.057.0*  
 
 where: Qd is the entrainment rate, (kg/m2s), for droplet diameter d, (m). 
    C* is an empirical entrainment constant which depends on oil type and weathering state. 
    Dd is the dissipated breaking wave energy per unit surface area, (J/m2) 
    S is the fraction of sea surface covered by oil 
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    F is the fraction of sea surface hit by breaking waves 
    d is the droplet diameter 
    �d is the oil particle interval diameter, (m) 
 
C*, the entrainment constant, was fitted to a series of experimental data according to the following 
relationships: 
 

If (�/�o) < 132 (cSt), C* = exp[-0.1023 ln(�/�o) + 7.575] 
If (�/�o) � 132 (cSt), C* = exp[-1.8927 ln(�/�o) + 16.313] 

 
 where:  � is the viscosity of the oil, (mPa/s) 
    �o is the density of the oil, (g/cm3)  
 
 
Dd, the dissipated wave energy, is given by: 
 

Dd = 0.0034 �wgHbreak
2 

 
 where:  �w is the density of seawater (kg/m3) 
    g is acceleration due to gravity 
    Hbreak is the rms of breaking wave height (m) 
 
Two methods exist within OILTRANS to calculate the rms of the breaking wave height, Hbreak. If 
the windwavesmodel option is enabled, the breaking wave height is obtained from the SWAN 
model output(s). If the windwavesmodel is not enabled, then the breaking wave height is calculated 
according to the formula from the CERC Shore Protection Manual as; 
 

�
�

�

�

�
�

�

�
�
�

�
�
�

�=
g

W
H break

2
10.243.0

.
2

1
 

 
 where: W10 is the wind speed at 10m above sea surface 
 
S, the fraction of the sea surface covered by oil, is assumed as unity. (1.0) 
 
F, the fraction of sea surface hit by breaking waves per unit time, is parameterised as follows: 
 

if W10 < Wth, F = 3e-6(W10
3.5 / Tw) 

if W10 > Wth, F = 0.032[(W10 - Wth) / Tw] 
 
 where:  Wth is the threshold windspeed for onset of breaking waves (~ 6m/s) 
    Tw is the significant wave period (s) 
 
 
Two methods exist within OILTRANS to calculate the significant wave period, Tw. If the 
windwavesmodel option is enabled, the significant wave period is obtained from the SWAN model 
output(s). If the windwavesmodel is not enabled, then the significant wave period is calculated 
according to the formula from the CERC Shore Protection Manual as; 



 
 

 

Development of OILTRANS Model code  
 

 

��
�

�
��
�

�
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10.13.8  

 
�d, the oil particle interval diameter, is based on the mean droplet diameter, d50. The mean droplet 
diameter d50 was curve fitted to data by Delvigne and Sweeney to form the following relationship: 
 

d50 = 1818 E-0.5 (�/�o)0.34 

 
 where:  E is the wave energy dissipation rate per unit volume, (J/m3s),  
    and set as 1e-3 for breaking waves. 
 
The minimum droplet diameter, Dmin, is assumed to be 10% of the d50 value because volumes 
below this size are relatively small and can be neglected.  
 
The maximum droplet diameter, Dmax, is set to equal the mean, because in testing droplets larger 
than d50 were found to resurface in less than one timestep, and so are not different to the surface 
slick. 
 
The oil particle interval diameter is then constructed by adopting 5No. size classes between Dmin 
and Dmax, equally spaced on diameter, as: 
 

�d = (Dmax - Dmin) / 5.0 
 
Therefore, the total entrainment rate, Qtotal (kg/m2s), for all droplet size classes is: 
 

� =
∆= 5

1

7.057.0*
i idtotal dSFdDCQ  

 
And the total mass entrained, Ment (kg), per time step is equal to: 
 

Ment = Qtotal * At * �t 
 
 where:  At is the area of slick at time t 
    �t is the timestep interval 
 

Density 
 
The initial oil density is obtained from either the API gravity of the oil, or the density value and 
reference temperature, both contained within the oil database. Only oils with densities lower than 
water are modelled, as more dense oils will sink. 
 
The change in oil density over time is related to three different processes; changing water 
temperature, evaporation, and emulsification.  
 
The change in density due to changing temperature can be expressed as: 
 

( )( )refrefoil TTCDensT −−= 0.1ρρ  
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 where:  �oil is density of oil for given water temperature, T 
    �ref is original (reference) density of oil at reference temperature Tref 
    CDensT is an empirical constant ( = 8e-4 (ref: ADIOS2)) 
 
The change in density due to evaporation can be expressed as: 
 

( )evaprefoil FCDensE.0.1 += ρρ  
 
 where:  CDensE is an empirical constant ( = 0.18 (ref: ADIOS2)) 
    Fevap is the fraction of oil evaporated from the slick 
 
The change in density due to emulsification can be expressed as: 

 
( ) ( )Υ−+Υ= 0.1refwoil ρρρ  

  
 where:  Y is the water content of the water-in-oil emulsion 
    �w is the density of seawater 
 
These three processes are combined in one single equation by Buchanan 1988 to give: 
 

( ) ( )( ) ( )( )refevaprefwoil TTCDensTFCDensE −−+Υ−+Υ= 0.1.0.10.1ρρρ  
 

Viscosity 
The change in oil viscosity over time is related to three different processes; changing water 
temperature, evaporation, and emulsification.  
 
The change in density due to changing temperature can be expressed using Andrade’s correlations 
as: 

�
�

�

�

�
�

�

�
−

= refTT
CT

refoil e
11

µµ  
 

 where:  �oil is viscosity of oil for given water temperature, T 
    �ref is original (reference) viscosity of oil at reference temperature Tref 
    CT is an empirical constant ( = 5000 (ref: ADIOS2)) 

 
The change in viscosity to evaporation can be expressed using Mackay’s equation as: 
 

evapFCE
refoil e .µµ =  

 
 where:  Fevap is the fraction of oil evaporated from the slick  
    CE is an empirical constant ( = 10.0 (ref: Reed 1998)) 
   
 
The change in viscosity due to emulsification can be expressed using Fingas’ data from Table 2 as: 
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Emulrefoil V.µµ =  

  
 where:  Vemul is the interpolated viscosity multiplier from Table 2. 
  
 
These three processes are combined in one single equation to give: 
 

... .
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IMPLEMENTATION 
 
 do P = 1 to stepT       external timestep loop 
   do IT =1 to stepIT            internal timestep loop 
 
     if(ix(2) == pTS(n))then             
      CALL InitialArea(RhoOil,DeltaRho,Phase1Time,AreaOil) 
Spill Event   ……      
      CALL Distribute(AreaOil, x_diff,y_diff)        
      CALL update_oil_particles(0, n, m, x_diff,y_diff) 
     end if                  
 
     if(nParLeft > 0 .and. VolumeOil > 0)then 
      VolumeBeach  = VolumeOil * REAL(nParBeached)/REAL(nParLeft)) 
Beaching    VolumeBeached = VolumeBeached + VolumeBeach 
      nParLeft = nParLeft - nParBeached                
      nParbeached = 0             
     end if 
       …..                
     IF (Spreading) THEN 
      CALL SpreadOptions(n,FirstAP,ElapsedTime,DeltaRho,          & 
Spreading         AreaOil,VolumeOil,RhoOil,SprdCase,x_diff,y_diff) 
      CALL update_oil_particles(SprdCase,n,m,x_diff,y_diff) 
     END IF 
 
     IF (Emulsification) THEN 
Emulsion    CALL Emulsify (n,ElapsedTime,FirstAP,RhoOil,ViscOil,&      
             ResinOil,AsphOil,WaterContent,xviscemul) 
     END IF 
 
     IF (Evaporation) THEN 
      CALL Evaporate (ElapsedTime,FirstAP,RhoOil,AreaOil,            & 
Evaporate        ResinOil,AsphOil,MassSpill,MassEvap,WaterContent,MassOil) 
      CALL Dissolution(ElapsedTime,WaterContent,AreaOil,MassDiss) 
     END IF 
 
     IF (Dispersion) THEN 
Dispersion    CALL Disperse (n,ElapsedTime,FirstAP,AreaOil,ViscOil,         & 
             RhoOil,par(:,pZ),MassOil,MassDisp) 
     END IF 
 
Density   CALL Density (RhoOil,MassEvap,MassSpill,WaterContent,DeltaRho) 
 
Viscosity   CALL Viscosity (ViscOil,RhoOil,MassEvap,MassSpill, xviscemul) 
 
     !update VolumeOil to reflect losses due oil weathering 
     VolumeOil = VolumeSpill - VolumeBeached - VolumeEvap - VolumeDisp - VolumeDiss 
 
Update    call update_particles() 
 
   end do               internal timestep loop 
 end do          external timestep loop 
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APPENDIX I: OILTRANS_data input file 
 
$numparticles     **NUMBER OF PARTICLES** 
  Numpar    = 100  Number of particles in simulation 
$end 
$timeparam      **TIME PARAMETERS** 
  Days    = 6.916667 Number of days to run the model 
  Iprint    = 3600  Print interval for OILTRANS output (seconds) 
  Dt      = 3600  External timestep (duration between ROMS/SWAN model predictions (s)) 
  Idt     = 120  Internal (particle tracking) timestep (s) 
$end 
$hydroparam     **ROMS HYDRO MODEL PARAMETERS** 
  Us     = 20  No. of Rho grid s-levels in ROMS model 
  ws                   = 21  No. of W grid s-levels in ROMS model 
  tdim                = 1   No. of timesteps in each ROMS hydro archive file 
  hc                   = 0.2  Minimum depth – used in ROMS s-level transforms 
  z0                   = 0.0005 ROMS roughness parameter 
  Vtransform   = 1   flag for vertical transform applied (1- WikiROMS Eq.1, 2 – WikiROMS Eq.2, 3 – Song/Haidvogel 1994 Eq.) 
  readZeta             = .False.  if TRUE, read sea surface height, zeta, from ROMS netCDF archive  
  constZeta           = 0   constant value for zeta if readZeta = .FALSE. 
  readSalt             = .True.   if TRUE, read salinity from ROMS netCDF 
  constSalt           = 0   constant value for salinity if readSalt = .FALSE. 
  readTemp   = .True.   if TRUE, read temperature from ROMS netCDF 
  constTemp   = 0   constant value for temperature if readTemp = .FALSE. 
  readDens   = .False.  if TRUE, read density from ROMS netCDF 
  constDens   = 0   constant value for density if readDens = .FALSE. 
  readU               = .True.   if TRUE, read U velocity  from ROMS netCDF 
  constU               = 0   constant value for U velocity  if readU = .FALSE. 
  readV               = .True.   if TRUE, read V velocity  from ROMS netCDF 
  constV              = 0   constant value for V velocity  if readV = .FALSE. 
  readW                = .True.   if TRUE, read W velocity  from ROMS netCDF 
  constW              = 0   constant value for W velocity  if readW = .FALSE. 
  readAks            = .True.   if TRUE, read vertical salinity diffusion coefficient  from ROMS netCDF 
  constAks             = 0   constant value for vertical salinity diffusion coefficient  if readAks = .FALSE. 
$end 
$turbparam      **TURBULENCE PARAMETERS** 
  HturbOn   = .False.  Horizontal turbulence on (TRUE) or off (FALSE) 
  VTurbOn            = .False.  Vertical turbulence on (TRUE) or off (FALSE) 
  ConstantHTurb   = 0   Constant value for horizontal turbulence if HTurbOn = TRUE 
$end 
$behavparam     **BEHAVIOUR PARAMETERS** - NOT USED IN OILTRANS 
  Behavior             = 0   Behaviour type (passive, near surface, near bottom, larval, oyster, etc) 
  OpenOceanBoundary   = .True.  Allow particles to escape from model domain, ie stick to open ocean boundary (TRUE) 
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  mortality            = .False.  Allow particles to die (TRUE) or not (FALSE) 
  deadage              = 691200 Age at which particles dies (stops moving) (s) 
  pediage              = 345600 Age at which particle reaches max swimming speed and can settle (s) 
  swimstart            = 0   Age that swimming (or sinking) begins (s) 
  swimslow            = 0.005  Initial swimming speed (m/s) 
  swimfast             = 0.043  Max swimming speed (m/s) 
  Sgradient            = 1   Salinity gradient threshold that cues larval behaviour (psu/m) 
  sink                 = -0.0003 Sinking velocity (m/s) 
  Hswimspeed          = 0.9  Tidal stream transport horizontal swimming speed (m/s) 
  Swimdepth           = 2   Depth of swimming during flood tides (m) above bottom 
$end 
$dvmparam      **DIURNAL VERTICAL MIGRATION PARAMETERS** - NOT USED IN OILTRANS 
  twistart             = 4.801821 Time of twilight start(hr) 
  twiend               = 19.19956 Time of twilight end (hr) 
  daylength            = 14.39774 Length of a day (hr) 
  Em                   = 1814.328 Irradiance at solar noon (uE. m^-2. s^-1) 
  Kd                   = 1.07  Vertical attenuation coefficient 
  thresh               = 0.0166 Light threshold that cues behaviour (uE. m^-2. s^-1) 
$end 
$settleparam      **SETTLEMENT MODULE PARAMETERS** - NOT USED IN OILTRANS 
  settlementon        = .False.  Settlement module on (TRUE) or off (FALSE) 
  holesExist           = .False.  Are there holes in the habitat polygons 
  minpolyid           = 101001 Lowest habitat polygon ID 
  maxpolyid           = 101006 Highest habitat polygon ID 
  minholeid            = 100101 Lowest hole number ID 
  maxholeid           = 100501 Highest hole number ID 
  pedges               = 36  Number of habitat polygon edge points (no of rows in habitat polygon file) 
  hedges               = 12  Number of hole edge points (no of rows in holes polygon file) 
$end 
$convparam      **CONVERSION PARAMETERS** 
  PI                   = 3.141593 pi 
  Earth_Radius        = 6378000 Equatorial radius of the earth 
  SphericalProjection = .True.  Use spherical projection from ROMS 
  latmin               = 53.5  Minimum latitude for spherical projection 
  lonmin              = -10  Minimum longitude for spherical projection 
$end 
$romsgrid      **ROMS netCDF model grid file & path 
  NCgridfile           = '/home/marcel/PromINPUT/Connemara/GRID/connemara.nc' 
$end 
$romsoutput                     **ROMS netCDF model archived hydrodynamics file(s) and path 
  prefix               = '/home/marcel/PromOUTPUT/Connemara/OILTRANS/connemara_his_'  NetCDF input file name prefix 
  suffix               = '.nc'                 NetCDF input file name suffix 
  filenum              = 3363                 Number of first netCDF filename to use 
  numdigits            = 4                  Number of digits in netCDF filename(s) 
  startfile            = .False.                 Is this the first file of a simulation (ie does it have initial timestep data) 
$end 
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  Oil_Asph            = 0.02  Asphaltene content of oil  
  Oil_Resin            = 20  Resin content of oil  
  Oil_Sat              = 0.842  Saturates content of oil  
  Cut_Temp            = 310,368,384,399,415,428,462,486,0.0,0.0,0.0,0.0,0.0,0.0,0.0  Temperature of each oil cut at which properties are determined 
$end 
$oilprocs      **OIL PROCESSES FOR MODELLING 
  Spreading            = .False.  Turn on (TRUE) or off (FALSE) mechanical spreading of oil slick 
  AreaOption          = 'ADIOS2' Method for calculating initial area of oil slick (ADIOS2, MOHID, CONCAW, OILPOL) 
  SprdOption         = 'ADIOS2' Method for calculating mechanical spreading of oil slick ((ADIOS2, MOHID, CONCAW, OILPOL) 
  Evaporation        = .False.  Turn on (TRUE) or off (FALSE) evaporation of oil slick 
  EvapOption          = 'FINGAS' Method ofor calculating evaporation from oil slick (FINGAS, MACKAY) 
  Emulsification      = .False.  Turn on (TRUE) or off (FALSE) emuslification of oil slick 
  Dispersion           = .False.  Turn on (TRUE) or off (FALSE) vertical dispersion of oil slick by wave action 
  Langmuir            = .False.  Turn on (TRUE) or off (FALSE) movement of oil slick by langmuir circulation 
  Stokes               = .False.  Turn on (TRUE) or off (FALSE) movement of oil slick by stokes drift 
  Wind                 = .False.  Turn on (TRUE) or off (FALSE) movement of oil slick by wind drift 
$end 
$windswaves     **WINDS & WAVES MODULE PARAMETERS 
  WindWaveModel      = .False.  Use SWAN model predictions  
  swan_prefix         = '/swan_his_' SWAN model output file prefix 
  swan_filenum        = 1000    Number of first SWAN filename to use 
  swan_suffix         = '.nc'   SWAN input file name suffix 
  SigWaveHeight      = 10   Constant value for significant wave height if WindWaveModel = FALSE (recalculated in OILTRANS) 
  SigWavePeriod       = 5    Constant value for significant wave period if WindWaveModel = FALSE 
  SigWaveLength       = 5    Constant value for significant wave length if WindWaveModel = FALSE 
  MeanWavePeriod     = 5    Constant value for mean wave period if WindWaveModel = FALSE 
  UWind_10           = 2    Constant value for 10m U wind component if WindWaveModel = FALSE 
  VWind_10            = 0    Constant value for 10m V wind component if WindWaveModel = FALSE 
  PeakDirection       = 270   Constant value for peak wave direction if WindWaveModel = FALSE 
  PeakWaveLength      = 10   Constant value for peak wave length if WindWaveModel = FALSE 
  MixingDepth         = 5    Constant value breaking wave mixing depth if WindWaveModel = FALSE (recalculated in OILTRANS) 
  Cd                   = 0.001   Constant value for drag coefficient if WindWaveModel = FALSE  
  Disper               = 0.001   Constant value for wave energy dispersion if WindWaveModel = FALSE 
$end 
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APPENDIX II: OILTRANS flow chart 
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APPENDIX III: OILTRANS CODE 
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Subroutine INITOIL 
!************************************** 
!*     Subroutine InitOil             * 
!************************************** 
SUBROUTINE InitOilModel(RhoOil,OilDensity,OilDensity_RefT,DeltaRho,ViscOil) 
 
USE PARAM_MOD,    ONLY:     Cut_Unit,Cut_Temp,Oil_Dens,WaterTemp, Oil_Dens_RefT,API,Dyn_Visc,Dyn_Visc_RefT,  & 
   Kin_Visc,Kin_Visc_RefT 
 
IMPLICIT NONE 
 
!I/O variables 
DOUBLE PRECISION, INTENT(OUT):: RhoOil,OilDensity,OilDensity_RefT,DeltaRho,ViscOil 
 
!Local variables 
DOUBLE PRECISION:: SGOil15                                         !Specific gravity of oil at 15degC 
DOUBLE PRECISION:: RhoOil15                                         !Density of oil at 15degC (kg/m3) 
INTEGER:: i, n, NumCuts                                             !counters 
LOGICAL:: novalue                                                !logic controllers 
DOUBLE PRECISION:: LowPresTemps(5)                                   !array for holding converted 40mmHG pressure temperatures 
 
!*************************** 
!*   INTIALIsE VARIABLES   * 
!*************************** 
! Equates to     200.0, 225.0, 250.0, 275.0, 300.0 degC at 40mmHg 
LowPresTemps = (/307.8, 337.7, 365.8, 394.9, 424.0/) !(K) 
! see BPO Crude Oil Analysis Data Bank User's Guide Methods 
! Taken from standard pressure-temperature nomograph 
 
novalue = .FALSE. 
 
!******************************* 
!*   INTIALISE OIL PROPERTIES   * 
!******************************* 
 
!Determine no. of cuts for volume distillation only 
!All other options use the ADIOS correlation eqn for 
!pseudocomponent evaporation 
SELECT CASE (trim(adjustl(Cut_Unit))) 
 CASE ("-----") 
  NumCuts = 0 
 
 CASE ("weight") 
  NumCuts = 0 
 
 CASE ("volume") 
   n = 1 
   NumCuts = 0 
   !determine number of cuts 
  DO WHILE (.NOT.novalue .AND. n < 16)                         !n = 15 [max number of cuts (10@760mmHg & 5@40mmHg)] 
   IF (Cut_Temp(n) == 0.0) THEN 
    novalue = .TRUE. 
   ELSE 
     NumCuts = n 
     n = n + 1 
   END IF 
  END DO 
   !determine if cuts have been made at reduced pressure 
   i = 1 
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   DO n = 1, NumCuts-1 
   IF (Cut_Temp(n) > Cut_Temp(n+1)) THEN                     !if temperature steps down => reduced pressure distillation 
    Cut_Temp(n+1) = LowPresTemps(i)   + 273.15            !assign temp correction based on P-T nomograph 
    i = i + 1 
   END IF 
  END DO 
 
 CASE DEFAULT 
   WRITE(*,*)'Error: Cut_Unit not defined' 
   WRITE(*,*)'*** FATAL ERROR - STOP ***' 
   STOP 
 
END SELECT 
 
!Determine initial oil density 
IF (Oil_Dens > 0.0) THEN 
 RhoOil = Oil_Dens * (1.0 - CDensT * ((WaterTemp+273.15) - Oil_Dens_RefT))          !actual density of spilled oil at ocean temperature (kg/m3) 
 OilDensity = Oil_Dens 
 OilDensity_RefT = Oil_Dens_RefT 
ELSEIF (API > 0.0) THEN 
 SGOil15 = 141.5 / (131.5 + API)                             !specific gravity of spilled oil at reference temp (15.5degC)    - from API standards 
 RhoOil15 = SGOil15 * RhoFWater15                             !density of spilled oil at reference temp (15.5degC) 
 RhoOil = RhoOil15 * (1.0 - CDensT * (WaterTemp - WaterTemp15))       !actual density of spilled oil at ocean temperature (kg/m3) 
 OilDensity = RhoOil15                                      !Reference oil density for subroutine DENSITY 
 OilDensity_RefT = WaterTemp15 + 273.15                            !reference oil temperature for subroutine DENSITY 
ELSE 
 WRITE(*,*)'No value DENSITY associated with this oil' 
 WRITE(*,*)'No modelling can be done' 
 WRITE(*,*)'*** FATAL ERROR - STOP ***' 
 STOP 
END IF 
 
DeltaRho  = (RhoWater - RhoOil) / RhoWater                             !relative density difference between water and oil densities 
 
!Determine initial oil dynamic viscosity 
IF (Dyn_Visc > 0.0) THEN 
  ViscOil = 1000.0 * Dyn_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Dyn_Visc_RefT)))    !Dynamic (kg/ms -> cP) 
ELSE 
 ViscOil = Kin_Visc * exp(ViscCt * 1.0/(WaterTemp+273.15)) - (1.0/Kin_Visc_RefT)))     !Kinematic (m2/s -> cSt) 
 write(*,*)'kin:',viscoil 
 ViscOil = 1000.0 * ViscOil * RhoOil                                !Dynamic (cP) 
END IF 
 
write(*,*)viscoil 
  
RETURN 
 
END SUBROUTINE InitOilModel 

Subroutine INITIALAREA 
!****************************** 
!*     Subroutine InitialArea * 
!****************************** 
SUBROUTINE InitialArea(RhoOil,DeltaRho,Phase1Time,OilArea) 
!Calculates the time to the end of the gravity-inertial spreading phase 
!(which we don't model) 
!and calculates the area of the spreaded oil at the end of that phase. 
USE PARAM_MOD, ONLY: AreaOption, pi, VolumeSpill 
 
IMPLICIT NONE 
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!I/O variables 
DOUBLE PRECISION, INTENT(IN) :: RhoOil, DeltaRho 
INTEGER, INTENT(OUT):: Phase1Time       !Computed time to gravity-inertial spreading phase (sec) 
DOUBLE PRECISION, INTENT(OUT) :: OilArea 
 
!Local variables 
DOUBLE PRECISION:: Area1 
DOUBLE PRECISION:: Area2 
DOUBLE PRECISION:: Time 
 
!When oil is denser than surrounding water, oil will sink => no spreading 
IF (RhoOil > RhoWater) THEN 
 !Oil is denser than water => no surface spreading 
 RETURN 
END IF 
 
SELECT CASE (F_UpCase(trim(adjustl(AreaOption)))) 
 
 CASE ("MOHID2") 
  !MOHID Description, 2003 
  !downloaded from 
  !http://maretec.mohid.com/PublicData/Products/Manuals/Mohid_Description.pdf 
  OilArea  = pi * (1.45**4.0 / 1.14**2.0) * 0.25 * (VolumeSpill**5.0 * Gravity * DeltaRho / (KinViscWater**2.0))**(1.0/6.0) 
  Phase1Time = nint((0.725/0.570)**4.0 * (VolumeSpill / (KinViscWater * Gravity * DeltaRho))**(1.0/3.0)) 
 
 CASE ("ADIOS2") 
  !NOAA, 2000 
  !"ADIOS (Automated Data Inquiry for Oil Spills) 
  !version 2.0.1 online help manual" 
  !Hazardous Materials Response and Assessment Division,NOAA. 
  !Prepared for the U.S. Coast Guard Research and Development Center, 
  OilArea  = pi * (1.21**4.0 / 1.53**2.0) * (VolumeSpill**5.0 * Gravity * DeltaRho  / (KinViscWater**2.0))**(1.0/6.0) 
  Phase1Time = nint((1.21/1.53)**4.0 *  (VolumeSpill / (KinViscWater * Gravity * DeltaRho))**(1.0/3.0)) 
 
 CASE ("CONCAW") 
  !van Oudenhoven, J., Draper, V., et al 1983 
  !"Characteristics of petroleum and its behavior at sea" 
  !CONCAWE Report No.8/83. Den Haag, November 1983. 
  Time = 0.00          !seconds (ie: almost instantaneous) 
  Area1 = 0.0          !gravity-inertia 
  Area2 = 0.0          !gravity-viscous 
  DO WHILE (Area1 < Area2)        !until gravity-viscous regime reached 
   Area1 = pi * (1.14**2.0) *  (DeltaRho * Gravity * VolumeSpill)**0.5 * Time 
   Area2 = pi * (0.98**2.0) *  ((DeltaRho * Gravity * (VolumeSpill**2.0)) / (KinViscWater**0.5))**(1.0/3.0) * (Time**0.5) 
   Time = Time + 10.0 
  END DO 
  OilArea = Area2         !Area at start of gravity-viscous regime 
  Phase1Time = nint(Time)         !Time since spill to start of gravity-viscous regime 
 
 CASE ("OILPOL") !GULFSPILL 
  !Rabeh, A.H., Lardner, R.W., Gunay, N. 2000 
  !"GulfSpill Version 2.0: a software package for oil spills in the Arabian Gulf" 
  !Environmental Modelling and Software 15 (2000) 425-442 
  OilArea = pi * (2.81 * sqrt(VolumeSpill))**2.0 
  Phase1Time = nint(0.00) 
 
 CASE DEFAULT 
  WRITE(*,*)'       Case not encoded' 
  WRITE(*,*)'No INITIAL SPILL AREA calculated' 
  WRITE(*,*)'****** PROGRAM TERMINATING ******' 
  OilArea = 0.0 
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Development of OILTRANS Model code  
 

 

DOUBLE PRECISION :: ran1,ran2,Ud,Vd 
 
SELECT CASE (s) 
 
 !Initial distribution after release 
 CASE (0) 
  par(m,pnX)  = par(m,pX) + param_1 
  par(m,pnY)  = par(m,pY) + param_2 
 
 !MOHID Diffusion 
 CASE(1) 
  CALL random_number(ran1) 
  CALL random_number(ran2) 
 
  Ud = ran1 * cos(2.0 * pi * ran2) * param_1      !param_1 = DiffVelocity 
  Vd = ran1 * sin(2.0 * pi * ran2) * param_2        !param_2 = DiffVelocity 
 
  par(m,pnX) = par(m,pX) + (Ud * idt) 
  par(m,pnY) = par(m,pY) + (Vd * idt) 
 
 !ADIOS spreading radius (only using CoefR: param_1) 
 CASE(2) 
  CALL random_number(ran1) 
  CALL random_number(ran2) 
 
  Ud = ran1 * cos(2.0 * pi * ran2) * param_1      !param_1 = DiffVelocity 
  Vd = ran1 * sin(2.0 * pi * ran2) * param_1        !param_1 = DiffVelocity 
 
  par(m,pnX) = par(m,pX) + (Ud * idt) 
  par(m,pnY) = par(m,pY) + (Vd * idt) 
 
 !CONCAW circular spreading radius 
 CASE(3) 
  par(m,pnX) = ((par(m,pX) - par((((numpar/nts)*(n-1))+1),pX)) * param_1) + par((((numpar/nts)*(n-1))+1),pX) 
  par(m,pnY) = ((par(m,pY) - par((((numpar/nts)*(n-1))+1),pY)) * param_1) + par((((numpar/nts)*(n-1))+1),pY) 
 
 !OILPOL ellipsical spreading radius 
 CASE(4) 
  par(m,pnX) = ((par(m,pX) - par((((numpar/nts)*(n-1))+1),pX)) * param_1) + par((((numpar/nts)*(n-1))+1),pX) 
  par(m,pnY) = ((par(m,pY) - par((((numpar/nts)*(n-1))+1),pY)) * param_2) + par((((numpar/nts)*(n-1))+1),pY) 
 
 CASE DEFAULT !Initial distribution of particels 
   par(m,pnX)  = par(m,pX) 
   par(m,pnY)  = par(m,pY) 
 
END SELECT 
 
par(m,pX)  = par(m,pnX) 
par(m,pY)  = par(m,pnY) 
par(m,pZ)  = par(m,pnZ) 
 
RETURN 
END SUBROUTINE update_oil_particles 

Subroutine SPREADOPTIONS 
**************************************** 
!*     Subroutine SpreadOptions     * 
!**************************************** 
SUBROUTINE SpreadOptions(n,FirstAP,ElapsedTime,DeltaRho,OilArea,VolumeOil, ,SprdCase,CoefR,CoefQ) 
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Development of OILTRANS Model code  
 

 

!  DeltaR  = lenR - sqrt(OilArea/pi)       !NewRadius - OldRadius 
!  CoefR  = DeltaR / lenR       !DeltaR / NewRadius 
  CoefR  = lenR / sqrt(OilArea/pi)       !fractional Radius increase 
  CoefQ  = 0.0 
  OilArea = Area        !Updated area of oil 
 
 !Lehr based method 
 CASE ("OILPOL")  !GULFSPILL 
  !OILPOL_2 solution - see OILPOL2.xls 
  !Chao, X., Shankar, J., Wang, S. 2003 
  !"Development and application of oil spill model for Singapore coastal waters" 
  !Journal of Hydraulic Engineering 129:7 (2003) 495-503 
  SprdCase = 4 
  WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0)) 
  Area = 2270.0 * (DeltaRho * (RhoWater/RhoOil))**(2.0/3.0) * (VolumeOil * m32bbl)**(2.0/3.0)               & 
      * (ElapsedTime * sec2min)**(1.0/2.0)                        & 
      + (40.0 * (DeltaRho * (RhoWater/RhoOil))**(1.0/3.0)        & 
      * (ElapsedTime * sec2min) * (WindSpeed * ms2kts)**(4.0/3.0)) 
 
  if(Area < OilArea)then 
   Area = OilArea 
  end if 
 
  if(FirstAP(n))then 
   lenQ1 = lenQ 
   lenR1 = lenR 
  end if 
 
  lenQ = 53.76 * (DeltaRho * (RhoWater/RhoOil))**(1.0/3.0) *(VolumeOil * m32bbl)**(1.0/3.0)                     & 
     * (ElapsedTime * sec2min)**(1.0/4.0) 
  lenR = lenQ + 0.95 * (WindSpeed * ms2kts)**(4.0/3.0)*(ElapsedTime * sec2min)**(3.0/4.0) 
 
  if(FirstAP(n))then 
   lenQ1 = lenQ 
   lenR1 = lenR 
  end if 
 
  CoefR = lenR / lenR1 
  CoefQ = lenQ / lenQ1 
  lenR1 = lenR 
  lenQ1 = lenQ 
 
 CASE DEFAULT 
  WRITE(*,*)'Case not encoded' 
  WRITE(*,*)'No SPREADING processes modelled' 
 END SELECT 
 
RETURN 
 
END SUBROUTINE SpreadOptions 

Subroutine EVAPORATE 
!***************************** 
!*     Subroutine Evaporate  * 
!***************************** 
SUBROUTINE Evaporate(ElapsedTime,FirstAP,RhoOil,AreaOil,ResinOil,AsphOil, MassSpill,MassEvap,WaterContent,MassOil) 
 
USE PARAM_MOD, ONLY:  WaterTemp,Uwind_10,Vwind_10,EvapOption,idt,VolumeSpill,Oil_Resin, Oil_Asph 
IMPLICIT NONE 
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!I/O variables 
INTEGER, INTENT(IN):: ElapsedTime 
LOGICAL, INTENT(IN):: FirstAP 
double precision, intent(in):: MassSpill, RhoOil,AreaOil, WaterContent,MassOil 
double precision, intent(inout):: resinoil, asphoil 
double precision, intent(out):: MassEvap 
 
!Local variables 
DOUBLE PRECISION:: PercentEvap        !percent of oil evaporated in timestep 
DOUBLE PRECISION:: CumPercentEvap       !cumulative percentage of oil evaporated to date 
DOUBLE PRECISION:: PercentDist        !percent of oil mass distilled at 180degC (FINGAS only) 
INTEGER:: n          !counter 
DOUBLE PRECISION:: Mol(16)        !molecular weight of pseudocomponent 
DOUBLE PRECISION:: MolFrac(16)        !molar fraction of pseudocomponent 
DOUBLE PRECISION:: VolFrac(16)        !volume fraction of pc 
DOUBLE PRECISION:: AvgMW        !average molecular weight 
DOUBLE PRECISION:: Ke         !mass transfer coefficient (m/s) 
DOUBLE PRECISION:: VEvap(16)        !volume of each pc evaporated 
DOUBLE PRECISION:: dTdFe        !rate of change of temperature versus fraction evaporated 
DOUBLE PRECISION:: InitBP        !initial boiling point 
INTEGER:: nPC         !number of pseudocomponent 
DOUBLE PRECISION :: WindSpeed 
double precision :: VolEvap 
 
!save values on exit 
SAVE:: CumPercentEvap, dTdFe, InitBP, nPC, PercentDist 
 
IF (FirstAP) THEN 
 CALL InitialEvap(dTdFe, InitBP, nPC) 
 PercentEvap = 0.0 
 CumPercentEvap = 0.0 
 MassEvap = 0.0 
 PercentDist = 20.0        !Alberta Sweet Mixed Blend (Fingas book p 219) 
END IF 
 
SELECT CASE (F_UpCase(EvapOption)) 
 
 CASE ("FINGAS") 
  !Fingas, M. 1997 
  !"The Evaporation of Oil Spills: 
  !Prediction of equations using distillation data" 
  !Arctic and Marine OilSpill Program Technical Seminar, 
  !Environment Canada. 1997 Vol1:20 pp1-20 
 
  !Assume Logarithmic (vast majority of oil types 
  PercentEvap = ((0.165 * PercentDist) + (0.045 * (WaterTemp-15.0))) * log(REAL(ElapsedTime,KIND(1)) / 60.0) 
  !!SquareRoot only applies to a few refined products - 
  !!eqn below (may include later) 
  !CumPercentEvap = ((0.0254 * PercentDist) + (0.01 * (WaterTemp- 5.0)))& 
  !    * sqrt(ElapsedTime / 60.0) 
 
  MassEvap = MassSpill * (PercentEvap / 100.0) 
  ResinOil = ResinOil / (1.0 - (MassEvap/MassSpill))     !Increase in resin % (Assuming no evaporation) 
  AsphOil = AsphOil / (1.0 - (MassEvap/MassSpill))     !Increase in asphaltene % (Assuming no evaporation) 
 
! CASE ("PSEUDO") 
!  !ADIOS2 
!  DO n = 1, nPC 
!   Mol(n) = Vol(n) / Vbar(n)      !moles in volume of pseudo component 
!  end do 
! 
!  do n = 1, nPC 
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!   IF (Vol(n) == 0.0)THEN 
!    MolFrac(n) = 0.0 
!    VolFrac(n) = 0.0 
!   ELSE 
!    MolFrac(n) = Mol(n) / sum(Mol) 
!    VolFrac(n) = Vol(n) / sum(Vol) 
!    AvgMW = AvgMW + MolFrac(n)*MW(n) 
!   END IF 
!  END DO 
! 
!  Ke = 0.0048 * WindSpeed**(7.0/9.0) * 1.3676 * (sqrt(0.018/AvgMW))**(2.0/3.0)) * (lenR*2.0)**(-1.0/9.0) 
!   
!  DO n = 1, nPC 
!   VEvap(n) = (Ke * VolumeOil * VapP(n) * Vbar(n) * VolFrac(n)) / & 
!      (R * Slickthickness * (WaterTemp+273.15)) * idt 
!   IF (Vol(n) - VEvap(n) > 0) THEN 
!    Vol(n) = Vol(n) - VEvap(n) 
!   ELSE 
!    Vol(n) = 0.0 
!   END IF 
!  END DO 
!  VolumeEvap = VolumeEvap + sum(VEvap) 
!  MassEvap = VolumeEvap * RhoOil 
 
 CASE ("MACKAY") 
  !Stiver W., Mackay, D. 1984 
  !"Evaporation rate of spills of hydrocarbons and petroleum mixtures" 
  !Environmental Science and Technology, 1984. vol 18, pp 834-480 
 
  WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0)) 
  Ke = 1.5E-3 * WindSpeed**0.78 
  PercentEvap = ((Ke * AreaOil * idt) / VolumeSpill) * exp(6.3 - ((10.3 *(InitBP + (dTdFe*CumPercentEvap))) & 
     / (WaterTemp + 273.15))) 
 
  CumPercentEvap = CumPercentEvap + PercentEvap     !Cumulative percentage evaporated 
  VolEvap  = VolumeSpill * CumPercentEvap     !Total volume evaporated to date 
  MassEvap = VolEvap * RhoOil      !Total mass evaporated to date 
  ResinOil = Oil_Resin / (1.0 - (MassEvap/MassSpill))     !Increase in resin % (Assuming no evaporation of resins) 
  AsphOil = Oil_Asph / (1.0 - (MassEvap/MassSpill))     !Increase in asphaltene % (Assuming no evaporation of asphaltenes) 
 
 CASE DEFAULT 
!  VolumeEvap = 0.0 
  MassEvap = 0.0 
  WRITE(*,*)'Case not encoded' 
  WRITE(*,*)'No EVAPORATION processes modelled' 
 
END SELECT 
 
END SUBROUTINE Evaporate 
 

Subroutine EMULSIFY 
!***************************** 
!*     Subroutine Emulsify   * 
!***************************** 
SUBROUTINE Emulsify(p,ElapsedTime,FirstAP,RhoOil,ViscOil,ResinOil,AsphOil, WaterContent, xviscemul) 
!Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in 
!Chpt. 10 of Oil Spill Science and Technology, 2011. 
!Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0 
USE PARAM_MOD, ONLY: Oil_Sat,idt,SigWaveHeight 
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IMPLICIT NONE 
 
!I/O variables 
INTEGER, INTENT(IN):: ElapsedTime,p 
double precision, intent(in):: RhoOil, ViscOil, ResinOil,AsphOil 
double precision, intent(out):: WaterContent, xviscemul 
logical, intent(in):: FirstAP(p) 
 
!Local variables 
DOUBLE PRECISION:: RelRhoOil        !Relative density (decimal) 
DOUBLE PRECISION:: D_t        !transformed density 
DOUBLE PRECISION:: V_t        !transformed viscosity 
DOUBLE PRECISION:: S_t        !transformed saturates 
DOUBLE PRECISION:: R_t        !transformed resins 
DOUBLE PRECISION:: A_t        !transformed asphaltenes 
DOUBLE PRECISION:: AR        !asphaltene/resin ratio 
DOUBLE PRECISION:: AR_t        !transformed asphaltene/resin ratio 
DOUBLE PRECISION:: StabilityC        !StabilityC index 
DOUBLE PRECISION:: Class(4,8)        !Array to hold Fingas empricial values 
DOUBLE PRECISION:: FormTime        !Time for emulsion state to form (min) 
DOUBLE PRECISION:: StartTime        !Start time from which to begin timing emulsion formation, etc (sec) 
DOUBLE PRECISION:: FingasDay        !Seconds from StartTime to end of one day (including formation time) 
DOUBLE PRECISION:: FingasWeek        !as above to end of one week 
DOUBLE PRECISION:: FingasYear        !as above to end of one year 
INTEGER:: ClassIndex         !Class Index (1 - 4) 
INTEGER:: StartClass         !class index and integer 
INTEGER::n          !class index and integer 
double precision, parameter:: eps = 1e-6 
 
!save values on exit 
SAVE:: ClassIndex, FormTime, StartClass, StartTime, FingasDay, FingasWeek, FingasYear 
 
IF (FirstAP(p)) THEN 
!Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in 
!Chpt. 10 of Oil Spill Science and Technology, 2011. 
!Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0 
   !  | U     E      M      S   | 
 Class = reshape((/  0.06,  0.42,  0.64,  0.76, &       ! DayWaterContent <- Figure 10.4 
   0.06,  0.37,  0.32,  0.76, &       ! WeekWaterContent <- Figure 10.4 
   0.06,  0.37,  0.20,  0.68, &       ! YearWaterContent <- Figure 10.4 
   1.0,   1.9,   7.2, 405.0, &       ! DayViscosityIncrease <-Table 10.4 
   1.0,   1.9,  11.0,1054.0, &       ! WeekViscosityIncrease <-Table 10.4 
   1.0,   2.1,  32.0, 991.0, &       ! YearViscosityIncrease <-Table 10.4 
   0,  30.8,  47.0,  27.1, &       ! FormTimeParamA <- Table 10.5 
   0, 18300, 49100,  7520 /), &     ! FormTimeParamB <- Table 10.5 
    shape(Class)) 
 
 WaterContent = 0.0 
 xViscEmul = 1.0 
 ClassIndex = 0 
 StartClass = 0 
 StartTime = 0.0 
END IF 
 
IF(ClassIndex < 4 ) THEN         !check until stable emulsion forms 
 
 !Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in 
 !Chpt. 10 of Oil Spill Science and Technology, 2011. 
 !Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0 
 
 !Density transform (ranges checked) 
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Subroutine DISPERSE 
!***************************** 
!*     Subroutine Disperse   * 
!***************************** 
SUBROUTINE Disperse(n,ElapsedTime,FirstAP,AreaOil,ViscOil,RhoOil,pZ,MassOil,MassDisp) 
!French-McKay, 2004 
!"Oil Spill Impact Modelling: Development and Validation" 
!Environmental Toxicology and Chemistry, Vol 23, No. 10, pp 2441-2456. 
!after 
!Delvigne, G., & Sweeney, C. 1988 
!"Natural Dispersion of Oil" 
!Oil and Chemical Pollution, Vol 4, pp 281-310 
 
USE PARAM_MOD, ONLY: SigWaveHeight,SigWaveLength,SigWavePeriod,idt,        & 
   UWind_10,VWind_10,numpar,windwavemodel 
 
IMPLICIT NONE 
 
!I/O variables 
INTEGER, INTENT(IN):: ElapsedTime,n 
LOGICAL, INTENT(IN):: FirstAP(n) 
double precision, intent(in):: AreaOil,ViscOil,RhoOil,MassOil 
double precision, intent(inout):: MassDisp 
DOUBLE PRECISION, DIMENSION(numpar), OPTIONAL, INTENT(INOUT) :: pZ 
  
!Local variables 
DOUBLE PRECISION:: Dbwe        !dissipated breaking wave energy per unit area (J/m2) 
DOUBLE PRECISION:: Hbreak        !breaking wave height (m) 
DOUBLE PRECISION:: Cstar        !empirical entrainment constant 
DOUBLE PRECISION:: FracWave        !fraction of sea surface hit by breaking waves 
DOUBLE PRECISION:: Oil_d50        !mean oil droplet diameter (um) 
DOUBLE PRECISION:: DropDiam(10)        !Do droplet diameter per size class (m) 
DOUBLE PRECISION:: Qd(10)        !Entrainment rate per size class (kg/m2s) 
DOUBLE PRECISION:: Qdtotal        !Total entrainment rate for all size classes 
DOUBLE PRECISION:: DeltaDiam        !oil droplet interval diameter (m) 
DOUBLE PRECISION:: Dmin        !minimum and maximum droplet diameter (m) 
DOUBLE PRECISION:: Dmax        minimum and maximum droplet diameter (m) 
DOUBLE PRECISION:: WindSpeed 
INTEGER:: i          !droplet distribution array counter 
DOUBLE PRECISION, PARAMETER:: Uth = 6.0       !Threshold wind speed for the onset of breaking waves (m/s) 
DOUBLE PRECISION, PARAMETER:: Ewave = 5000.0       !mean energy dissipation rate per unit volume (J/m3-s) ranges between 1,000 and 10,000 (J/m3.s) - See Delvigne (1988) 
DOUBLE PRECISION, PARAMETER:: FracOil = 1.0       !fraction of sea surface covered by oil. 
double precision :: pMass 
integer:: pQd,pN 
double precision:: ran,waveheight,waveperiod 
logical :: found 
 
IF (FirstAP(n)) THEN 
 MassDisp = 0.0        !initialise mass dispersed 
END IF 
 
!Calculate empirical entrainment constant Cstar 
IF (ViscOil < 132.0 ) THEN 
 Cstar = exp( (-0.1023 * log(ViscOil)) + 7.572) 
ELSE 
 Cstar = exp( (-1.8927 * log(ViscOil)) + 16.313) 
END IF 
 



 
 

 

Development of OILTRANS Model code  
 

 

!calculate windspeed 
WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0)) 
 
!determine waveheight and wave period 
if(windwavemodel)then 
 waveheight = SigWaveHeight       !SWAN model output 
 waveperiod = SigWavePeriod 
else 
 waveheight = 0.243 * (WindSpeed)**2.0 / Gravity      !CERC formulation  
 waveperiod = 8.13 * WindSpeed / gravity 
end if 
 
!calculate breaking wave height 
Hbreak = (1.0/sqrt(2.0)) * waveheight 
 
!Calculate dissipated breaking wave energy (J/m2) 
Dbwe = 0.0034 * RhoWater * Gravity * (Hbreak**2.0) 
 
!Calculate fraction of sea surface hit by breaking waves 
IF (WindSpeed <= Uth ) THEN 
 FracWave = 3E-06 * (WindSpeed**3.5 / WavePeriod) 
ELSE 
 FracWave = 0.032 * ( (WindSpeed - Uth) / WavePeriod) 
END IF 
 
!Calculate mean oil droplet diameter (um), 
!minimum radius (m) and maximum radius (m) 
Oil_d50 = 1818.0 * (Ewave**-0.5) * (ViscOil**0.34)        !based on viscosity 
Dmin = 0.1 * Oil_d50 * 1E-06         convert from micrometers to meters) 
Dmax = Oil_d50 * 1E-06          !(convert from micrometers to meters) 
 
!write(*,*)oil_d50,rmin,rmax 
!Construct droplet size distribution 
!Adopt 5No. size classes between Rmin and Rmax, 
!equally spaced on diameter 
DeltaDiam = (Dmax - Dmin ) / 5.0 
 
!initialise total entrainment rate every timestep 
Qdtotal = 0.0 
 
DO i = 1, 5 
 if(DropDiam(i) < 70e-6)then       !70um 
  !for each droplet interval, calculate centred droplet diameter, Do 
  DropDiam(i) = ((2.0 * Rmin) + (0.5 * DeltaDiam)) + (DeltaDiam * (i-1)) 
  Qd(i) = Cstar * (Dbwe**0.57) * FracOil * FracWave * (DropDiam(i)**0.7) * DeltaDiam   !(kg/m2s) 
 else 
  Qd(i) = 0.0 
 end if 
 !sum over all droplet classes for total entrainment rate 
 Qdtotal = Qdtotal + Qd(i) 
END DO 
 
!calculate mass dispered (kg) and volume dispersed (m3) 
MassDisp = MassDisp + (Qdtotal * AreaOil * idt) 
  
return 
 
END SUBROUTINE Disperse 
�
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Subroutine DENSITY 
!***************************** 
!*     Subroutine Density    * 
!***************************** 
SUBROUTINE Density(RhoOil,MassEvap,MassSpill,WaterContent,DeltaRho) 
!Buchanan, I. 1988 
!"Methods for predicting the physical changes of oil spilled at sea" 
!Oil and Chemical pollution vol 4(4) pp311-328 
USE PARAM_MOD, ONLY:  WaterTemp,Evaporation,Emulsification,Oil_Dens, Oil_Dens_RefT 
 
IMPLICIT NONE 
 
double precision, intent(in)::MassEvap,MassSpill,WaterContent 
double precision, intent(inout):: RhoOil 
double precision, intent(out):: DeltaRho 
 
!First re-calculate RhoOil based on temperature correction. 
RhoOil = Oil_Dens *  (1.0 - CDensT * ((WaterTemp + 273.15) - Oil_Dens_RefT))      !actual density of spilled oil at ocean temperature (kg/m3) 
 
!Check if Evaporation enabled 
!- if so include Evap effect on RhoOil already calculated 
IF (Evaporation) THEN 
 RhoOil = RhoOil * (1.0 + CDensE * (MassEvap / MassSpill)) 
END IF 
 
!Check if Emulsification enabled 
!- if so include Emuls effect on RhoOil already calculated 
IF (Emulsification) THEN 
 RhoOil = (WaterContent * RhoWater) + (RhoOil * (1.0-WaterContent)) 
END IF 
 
DeltaRho  = (RhoWater - RhoOil) / RhoWater 
 
RETURN 
 
END SUBROUTINE Density 

Subroutine VISCOSITY 
!******************************* 
!*     Subroutine Viscosity    * 
!******************************* 
SUBROUTINE Viscosity(ViscOil, RhoOil, MassEvap, MassSpill, xviscemul) 
 
USE PARAM_MOD, ONLY: Dyn_Visc,Kin_Visc,WaterTemp,Dyn_Visc_RefT, Kin_Visc_RefT,Evaporation,Emulsification 
 
IMPLICIT NONE 
 
double precision, intent(in):: RhoOil, MassEvap,MassSpill,xviscemul 
double precision, intent(inout):: ViscOil 
 
!NewViscosity  = RefViscosity * exp(dViscTemp + dViscEvap) * xViscEmul 
!  = RefViscosity * exp(dViscTemp) * exp(dViscEvap) * xViscEmul 
 IF (Dyn_Visc > 0.0) THEN 
 ViscOil = 1000.0 * Dyn_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Dyn_Visc_RefT)))   !Dynamic (kg/ms -> cP) 
 ELSE 
 ViscOil = 1000.0 * Kin_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Kin_Visc_RefT)))    !Kinematic (m2/s -> cSt) 
 ViscOil = ViscOil * RhoOil          !Dynamic (cP) 
END IF 
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IF (Evaporation) THEN           !(Mackay,1980) 
 ViscOil = ViscOil * exp((Evap_C4 * (MassEvap / MassSpill))) 
END IF 
 
IF (Emulsification) THEN           !(Fingas 2011) 
 ViscOil = ViscOil * xViscEmul 
END IF 
 
RETURN 
 
END SUBROUTINE Viscosity 
 

Subroutine DISSOLUTION 
!******************************** 
!*     Subroutine Dissolution   * 
!******************************** 
SUBROUTINE Dissolution(ElapsedTime,WaterContent,AreaOil,MassDiss) 
!Cohen, Y., D. Mackay and W.Y. Shiu, (1980): 
!"Mass Transfer Rates Between Oil Slicks and Water". 
!The Canadian Journal of Chemical Engineering. Vol. 58. 
USE PARAM_MOD, ONLY: idt 
 
IMPLICIT NONE 
 
INTEGER, INTENT(IN):: ElapsedTime 
double precision, intent(in):: WaterContent,AreaOil 
Double precision, INTENT(INOUT):: MassDiss 
 
DOUBLE PRECISION, parameter:: InitSol  = 0.03     !need to change this if data become available 
DOUBLE PRECISION, parameter:: DecayRate = 0.1      !need to change this if data become available 
DOUBLE PRECISION, parameter:: MassTranCoeff = 0.01      !(m/hr) !need to change this if data become available 
DOUBLE PRECISION:: Sol 
 
Sol  = InitSol * exp(-DecayRate * (ElapsedTime/3600.0))     !convert ElaspedTime from seconds to hours 
MassDiss = MassDiss + (MassTranCoeff/3600.0) * (1.0-WaterContent) *        & 
   AreaOil * Sol * idt 
RETURN 
 
END SUBROUTINE Dissolution 


