

Development of OILTRANS Model code

Activity 4

Task 4.3: Drift and Pollutants Behaviour Predictions

ARCOPOL

The Atlantic Regions’ Coastal Pollution Response

Version: 1.0

Last updated on: 23/12/2011

Author: Alan Berry

Responsible partner: IST

Involved partners: Marine Institute

Development of OILTRANS Model code

OVERVIEW ..3

INTERPOLATION SCHEME...3

Advection sub-model. ..4

INPUT FILES ..5

Model Grid and bathymetry...5
Model archived hydrodynamics...6
SWAN input files...6
Particle locations input file ..7

LTRANS: ...7
OILTRANS:...7

Model parameters input file ...7

MODEL EXECUTION..7

Model Initialisation ..7
External Timestep Loop...8
Internal Timestep Loop..9
Model Termination ..10

Oil Module ...10

Spreading ...11
Initial Area of Spill ..11
Spreading of Spill...13

Evaporation ..15
Stiver & Mackay ..15
Fingas ...16

Emulsification ..17
Dispersion ..18
Density ...20
Viscosity...21

APPENDIX I: OILTRANS_data input file ...26

APPENDIX II: OILTRANS flow chart ...30

APPENDIX III: OILTRANS CODE ...35

Subroutine INITOIL ..36
Subroutine INITIALAREA..37
Subroutine DISTRIBUTE..39
Subroutine update_oil_particles...39
Subroutine SPREADOPTIONS...40
Subroutine EVAPORATE ...43
Subroutine EMULSIFY ...45
Subroutine DISPERSE...49
Subroutine DENSITY..51
Subroutine VISCOSITY ..51
Subroutine DISSOLUTION...52

Development of OILTRANS Model code

OVERVIEW

The OIL TRANSport Lagrangian model (OILTRANS) is an off-line particle-tracking
model that runs with the stored predictions of a both a 3D hydrodynamic model, specifically the
Regional Ocean Modelling System (ROMS) and a wave model, specifically SWAN.

OILTRANS is based on the LTRANS code base which was built to simulate oyster larvae. The
LTRANS model was designed to predict the movement of particles based on advection, turbulence
and larval behaviour.

It includes a 4th order Runge-Kutta scheme for particle advection and a random displacement model
for vertical turbulent particle motion. The original LTRANS code was built by Elizabeth North and
Zachary Schlag of University of Maryland Center for Environmental Science Horn Point
Laboratory. It was written in Fortran 90 and is designed to track the trajectories of particles in three
dimensions

Components of LTRANS have been in development since 2002 and are described in the following
publications: North et al. 2005, North et al. 2006a, North et al. 2006b, and North et al. 2008.

The LTRANS code was adapted to simulate the mechanical spreading and physical fate processes
of oil particles. OILTRANS expanded the processes governing particle transport to include;
mechanical spreading of oil slicks, wind drift, stokes drift, langmuir circulation and shoreline
beaching.

The code has an external and internal time step and boundary condition algorithms that keep
particles from leaving the model domain. The external time step is the time step of hydrodynamic
model output (e.g., 1hr). The internal time step is the time interval during which particle movement
is calculated (e.g., 120 sec). The internal time step is smaller than the external time step so that
particles do not move in large jumps that could cause inconsistencies between predictions of the
hydrodynamic model and the particle tracking model.

At each internal time step of the transport model, particle motion is calculated as the sum of
movement due to advection, turbulence, wind drift, stokes drift, mechanical spreading, langmuir
circulation along with the original LTRANS options for larval behaviour. The model contains sub-
models for each of these components. The transport and behaviour routines can be turned off so that
particle movement is based solely on advection.

INTERPOLATION SCHEME

The ROMS and SWAN model predictions (stored in NetCDF format) are read in and interpolated in
space and time to the particle location. The first step in the process of interpolating the wave and
water properties (e.g., current velocities, salinity, temperature, sea surface height, and vertical and
horizontal diffusivities, wave period, wave height, wind speed) to the particle location is to
determine the grid cell in which the particle is located. For this, the ‘crossings’ point-in-polygon
approach coupled with a search algorithm for computational efficiency is used.

Development of OILTRANS Model code

Once the particle is located in a grid cell, water properties are interpolated in space to the particle
location. All water properties are interpolated from the native ROMS and SWAN grid points (i.e., u
grid points are used to calculate u-velocity at the particle location, v grid points are used for v-
velocity, and rho grid points are used for sea surface height, w-velocity, salinity, and diffusivity
calculations).

For two-dimensional water properties (e.g., sea surface height, water depth, wave height, etc)
bilinear interpolation is used. For three-dimensional water properties (e.g., current velocities,
diffusivities, salinity), a water-column profile scheme is applied (North et al. 2006a). In this
scheme, values are interpolated along each s-level to create a vertical profile of values at the x-y
particle location.

A tension spline curve is then fit to the vertical profile and used to estimate the water property at the
particle location. The interpolation scheme was adapted from North et al. (2006a), streamlined to
increase computational speed, and enhanced to handle model domains with irregular bottoms and
non-rectangular grid geometries. It should be noted that this interpolation scheme likely assumes
that the underlying hydrodynamic model grid is orthogonal (Rich Signell, pers. comm.).

Although there are several available methods for interpolating to the particle location (e.g., linear
interpolation, cubic splines) a sophisticated tension spline curve fitting routine is used. Both cubic
and simple tension splines cause ‘offshoots’. Offshoots occur when the interpolated line does not
preserve the monotonicity and concavity of the original data.

For particle tracking, it is necessary to interpolate in time as well as space because the duration
between successive outputs of the hydrodynamic models (i.e., the external time step) is longer than
the time step of particle motion (i.e., the internal time step). To do this, water properties are
estimated at the particle location (as above) at three time points (previous, current and future) that
correspond to the hydrodynamic model output. Then a polynomial curve is fit to the water
properties at three time points and used to calculate the water properties at the time of particle
motion (i.e. for the internal time step).

Advection sub-model.

A 4th order Runge-Kutta scheme in space and time is used to calculate particle movement due to
advection. This scheme solves for the u-, v-, and w- current velocities (representing the x-, y-, and z-
directions) at the particle location using an iterative process that incorporates velocities at previous
and future times to provide the most robust estimate of the trajectory of particle motion in water
bodies with complex fronts and eddy fields like Chesapeake Bay.

Current velocities (m s-1) provided by the Runge-Kutta scheme are multiplied by the duration of the
internal time step (

���
) to calculate the displacement of the particle in each component direction.

Displacements (m) are then added to the original location of the particle (xn, yn, zn) in order to
calculate the new location of the particle (xn+1, yn+1,
zn+1):

Development of OILTRANS Model code

The u and v current velocities are separated into north and east component directions before particle
motion is estimated. Law-of-the-wall (a log layer calculation) is applied to the current velocities
within one s-level of bottom to simulate reduction in current velocities near bottom.

NOTE:
The LTRANS model was designed to maintain fidelity with hydrodynamic model predictions. All
interpolation occurs from the original staggered grid of the u, v, and rho grid points directly to the
particle location. In addition, horizontal interpolation occurs along s-levels in an attempt to follow
the structure of the hydrodynamic model in regions of changing bathymetry. These interpolation
schemes may be costly in computation time compared to less accurate schemes; the benefits have
not been quantified. The LTRANS model was developed to simulate oyster larvae in Chesapeake
Bay, a region with complex bathymetry and horizontal and vertical current shears. It is not known
whether the LTRANS interpolation schemes would be appropriate in other systems, and, if so, in
what conditions they should be used.

INPUT FILES

Model Grid and bathymetry

The OILTRANS model uses hydrodynamic data from ROMS NetCDF files. It uses two files, a
bathymetry grid file that contains information about the model grid, and the output files that contain
the hydrodynamic model predictions.

The following variables should be in the bathymetry grid file that contains the ROMS model grid
information:

angle angle between x-coordinate and true east direction
h depths of rho nodes
mask_rho rho node mask value
mask_u u node mask value
mask_v v node mask value
lon_rho longitude coordinates of rho nodes
lon _u longitude coordinates of u nodes
lon _v longitude coordinates of v nodes
lat_rho latitude coordinates of rho nodes
lat _u latitude coordinates of u nodes
lat _v latitude coordinates of v nodes

The main structure of OILTRANS is based on the assignment of a unique number to each ROMS
model grid point (referred to as a node). Each grid cell (referred to as an ‘element’) is comprised of
a set of 4 nodes. After the hydrodynamic data is read from the NetCDF files into the variables listed

Development of OILTRANS Model code

above, it is reorganized so that each data point is assigned the appropriate node number. This is
done in the subroutine initGrid in the Hydrodynamic Module after the grid variables are read in.

Model archived hydrodynamics

The following variables should be in the ROMS output files that contain the archived hydrodynamic
model predictions. OILTRANS assumes that the sequential ROMS output files contain the same
number of time steps in each file (e.g., if the first file contains predictions at 24 discrete times, then
all files should contain predictions at 24 discrete times).

Note: Variables Sc_r, Sc_w, Cs_r, and Cs_w must be in the first output file used by OILTRANS.
The other variables should be in all of the output files used by OILTRANS.

Sc_r s coordinate on rho grid
Cs_r Cs value on rho grid
Sc_w s coordinate on w-grid
Cs_w Cs value on w-grid

Aks vertical diffusivity of salinity at rho nodes
salt rho node salinity
temp rho node temperature
u u-direction velocity
v v-direction velocity
w w-direction velocity
dens rho node density
zeta zeta levels at rho nodes

SWAN input files

The OILTRANS model has the option to use wind and wave data from SWAN model NetCDF
files. OILTRANS assumes that the sequential SWAN output files contain the same number of time
steps in each file (e.g., if the first file contains predictions at 24 discrete times, then all files should
contain predictions at 24 discrete times). The following variables should be in the SWAN output
files that contain the archived wind and wave model predictions.

Note: The SWAN model must generate model predictions on the same model grid as the ROMS
model.

Hs significant wave height
tm_01 mean wave period
u10 10m wind speed U component
v10 10m wind speed V component
Pd peak wave direction
Pwl peak wave length

Development of OILTRANS Model code

Particle locations input file

LTRANS:

The particle locations are read in from a .csv file which contains either three or four columns:
longitude, latitude, depth (in meters) and, if settlement is turned on, the id of the habitat polygon the
particle starts on. This file must have at least as many rows as the number of particles in the
parameter numpar. All of the particle start locations should be within the model boundaries.

OILTRANS:

The particle locations are read in from a .csv file which contains four columns: longitude, latitude,
depth (in meters) and time of spill. The first entry in the .csv file defines the number of spill
locations to be simulated. The file must have as many subsequent rows as the number of spill
locations to be modelled (not the number of particles in the simulation). The particle start locations
should be within the model boundaries.

Model parameters input file

One input file, OILTRANS_data, contains the parameters that are used to adapt OILTRANS to
different ROMS hydrodynamic model domains, change particle attributes (e.g., turn on/off
behaviour, oil module, etc), and set input/output file paths. All initialization variables are placed in
this file so that the code does not need to be modified to run OILTRANS in different model
domains or with different particle characteristics. Everything that the user may need to change can
be found in OILTRANS_data, (see Appendix I).

MODEL EXECUTION

OILTRANS.f90 contains the main structure of the particle-tracking program. It executes the
external time step, internal time step, and particle loops, advects particles, and writes output.

It calls the modules that read in hydrodynamic model information, move particles due to turbulence
and (larval or oil) behaviour, weathers oil spills, test if particles are in habitat polygons, and apply
boundary conditions to keep particles in the model domain.

Model Initialisation

Before the iterative loops that comprise the heart of the particle tracking model structure,
OILTRANS.f90 starts with an initialisation subroutine called ini_LTRANS.

Subroutine getParams reads in the OILTRANS_data input file, making the
parameters declared within available to all the other modules

Development of OILTRANS Model code

subroutine init_genrand is called to initialise the Mersenne Twister random number generator,
creating random numbers between 0 and 1 from a uniform distribution.

Several time stepping variables are calculated, variable arrays are initialized, and the particle
locations are read in and their latitude and longitude coordinates are converted to meters.

If the OIL model is activated OILTRANS.f90 calls the subroutine initOilModel.that calculates the
density and viscosity of the oil at the moment of the spill incident.

Subroutine initGrid is used to read the latitude and longitude coordinates of the nodes in the rho, u,
and v grids, depth at the rho nodes, the angle between x coordinate and true east, masks of the rho,
u, and v grid nodes that specify whether the nodes are on land or in water, and the variables
necessary to calculate s-levels. It also assigns unique identification numbers to rho-, u- and v
elements to create the OILTRANS grid element structure.

In addition, information about the ROMS hydrodynamic model domain is read in and used to create
the OILTRANS model domain and grid element structure. In OILTRANS, an element is defined as
a set of four adjacent rho, u or v nodes that form a quadrilateral. Each element is assigned a unique
identification number. These numbers are used to store previous, and efficiently search for new,
particle locations.

A number of subroutines are called to initialize the OILTRANS domain and element structure.

Subroutine createBounds defines the OILTRANS model boundaries based on the land/sea masking
of the rho grid.

Subroutine initBehave is used to initialize the matrices that contain information on particle
attributes for the Behavior Module of the original LTRANS code.

The code then does a series of checks on each particle to ensure it is within the model boundaries,
and not within an island element of the model.

Finally, subroutine initHydro reads in the initial ROMS hydrodynamic data (u-, v-, and w-
velocities, salinity, temperature, zeta, and vertical diffusivity) for the back, center, and forward time
steps from the first sequential ROMS archived output file.

If the WindsWavesModel parameter is activated in the OILTRANS_data input file, the initial
SWAN data (significant wave height, mean wave period, peak wave direction, peak wave length,
10m U and V wind speed components) for the back, centre, and forward time steps from the first
SWAN sequential output file.

Control then passes back to the main OILTRANS.f90 code which calls the run_LTRANS
subroutine, controlling the external and internal timestep loops, particle tracking and oil weathering
procedures.

External Timestep Loop

Development of OILTRANS Model code

This loop which iterates for each external time step contains the majority of the execution code of
the program. The execution of the external time step loop can be broken down into three major
sections: updating the hydrodynamic data, the internal time step loop, and the output (print) section.
The internal time step loop will be covered in the following section.

The main purpose of the external time step loop is to update hydrodynamic data. The hydrodynamic
data comes from ROMS NetCDF files and optionally SWAN netCDF files which contain
information about u velocity, v velocity, w velocity, salinity, sea surface height, wave properties
and wind speeds

To calculate water properties at the particle location, OILTRANS uses hydrodynamic model output
from the current (‘center’) time step, the previous (‘back’) time step, and the future (‘forward’) time
step. On the first iteration of the external time step the attributes of the back, center, and forward
times are taken directly from the first netcdf file. However, on every subsequent iteration the back
and center time steps’ attributes are transferred from the previous center and forward time steps,
respectively, and data from the netcdf files is only read in for the forward time step.

The duration of the external time step (in seconds) is set in OILTRANS_data with the
variable dt. The value dt should be equal to the duration between the instantaneous snapshots of
data in the hydrodynamic input files. For example, if one netcdf file contains 24 hrs of data stored at
1 hour intervals, then the external time step is 1 hour

The variable tdim found in OILTRANS_data should be initialized to the total number of external
time steps within each hydrodynamic model output. The variable stepT, the total number of
external time steps in the model, is seconds divided by dt, where seconds is the total number of
seconds that the model will run.

The external time step consists of a loop from 1 to stepT using the variable p to iterate. The first
two iterations use the same data, so the hydrodynamic data is initialized before the first iteration by
calling subroutine initHydro and is not updated again until p is greater than 2.

On all other iterations, the program updates hydrodynamic data by calling subroutine
updateHydro. In updateHydro, the ‘forward’ variables are updated with the most recent
hydrodynamic data and the ‘back’ and ‘center’ variables are replaced with the ‘center’ and
‘forward’ variables from the previous time step, respectively.

Following the update hydrodynamic data section is a short section used to update the external time
step values in ex(). The variable ex() is an array of three values used to store the back time, center
time, and forward time in seconds. These values are calculated by using multiples of dt, the size of
the external time step in seconds.

Internal Timestep Loop

The internal time step loop is the loop in which the particle tracking and oil weathering occurs. The
internal time step is shorter than the external time step to allow particles to move in smaller
intervals than the hydrodynamic model output intervals. Within each iteration of the internal time
step loop, the time and internal time step values, ix(), are updated.

Development of OILTRANS Model code

The OILTRANS model checks whether the correct ix() time has been reached to activate the oil
spill. If so the model calls subroutine InitialArea which calculates the initial area of the spill after
the gravity spreading phase has ceased, and the PhaseTime after which the gravity phase will have
ceased.

After this, model goes into a loop from 1 to numpar through each particle, randomly distributing
oil particles using a normal distribution throughout the theoretical Fay area of spill.

The model then checks if PhaseTime has been reached, in which case the oil weathering processes
(evaporation, emulsification, dispersion, dissolution, density, viscosity, etc) are called depending on
the options chosen in OILTRANS_data input file.

Once this is complete, the program enters the particle transport loop from 1 to numpar where
particle movement due to advection, turbulence, winds and waves, is calculated over the time step.
Then particle locations are updated. These events occur every iteration of the internal time step.

The duration of the internal time step, idt, must be set in OILTRANS_data. The variable stepIT
(the number of internal time steps per external time step) is then initialized as the value of dt (the
external time step) divided by idt (the internal time step).

The internal time step is a loop that iterates from 1 to stepIT using the variable it. The values of
ix(), the internal time step values, are calculated. Ix() is an array with three
values, so it can hold the internal ‘back’, ‘center’, and ‘forward’ times.

Model Termination

Once the internal and external timestep loops have been completed, control passes back to the
OILTRANS.f90 program which calls the subroutine fin_LTRANS. The purpose of this subroutine
is to write the final positions and status to the final output file, de-allocate local variables and
module level variables and calculate model run time and output to screen before exiting.

Oil Module

The oil module was developed to predict the evolution and behaviour of the processes (transport,
spreading and weathering) of oil spilled in the water. The processes included in the oil module are:
spreading, evaporation, emulsification, dispersion, dissolution and oil beaching, along with the
transport processes of wind drift, stokes drift and langmuir circulation.

The oil weathering module uses the ROMS archived hydrodynamics and optionally, the SWAN
archived wind and wave fields. The trajectory of the oil slick is computed assuming that the oil can
be idealised as a number of particles that independently move in the water. Except for oil spreading,
dispersion and beaching, all weathering processes and properties are assumed uniform for all oil
particles. Additionally, it is assumed that the temperature of the oil is the same as the ambient water
temperature.

Development of OILTRANS Model code

Different alternative methods were coded for the prediction of the oil spreading and evaporation
processes. There is therefore more than one way of simulating the same process.

Weathering and movement processes of the oil slick can interact, with the weathering strongly
influencing how the oil is moved. Weathering processes occur at very different rates, but all begin
immediately after oil is spilled. Weathering rates are not constant throughout the duration of the
spill, and are usually highest immediately after the spill. All weathering and transport processes are
strongly dependant on the type of oil, the volume of oil spilled and the weather conditions during a
spill event.

The order of importance of the various weathering processes are; evaporation, emulsification,
dispersion, dissolution, photo-oxidation, sedimentation, and biodegradation. Only the first four
weathering processes are included in the current OILTRANS model, as they account for 99% of the
reduction in oil spill volume during the first week after a spill.

Spreading

Oil spreads horizontally over the water surface even in the complete absence of wind or water
currents. The spreading is due to the force of gravity and the interfacial tension between oil and
water. The oil viscosity opposes these forces. Usually within the first hour, the effect of gravity on
the spreading of the oil slick is greatly reduced and the spreading of the slick is controlled based on
the balance between the viscosity of the oil and the oil-water interfacial tension.

Most attempts at understanding the spreading process have produced formulas that only roughly
approximate the actual spill results, as the spreading process is a complex interaction between the
physical properties of the oil and the environmental state of the sea surface.

The most widely used formulations for determining the spread of oil on the water’s surface are
modified versions of the now classical equation proposed by Fay, 1969.

The current OILTRANS model incorporates four different formulations for the surface spreading of
the oil slick. The first three formulations, ADIOS2, MOHID2 and CONCAW are similar
implementations of a Fay algorithm, but with different parameterisations for radial spreading.

The fourth formulation, that of Lehr as used in OILPOL, attempts to account for the elongated
spreading of the oil slick in a downwind direction using a modified version of the Fay spreading
formulations.

Fay broke the spreading process into three phases; the first phase in which only gravity and inertia
forces are important, the second phase in which gravity and viscous forces dominate and a final
phase in which surface tension is balanced by viscous forces.

Initial Area of Spill

ADIOS2 & MOHID2

Development of OILTRANS Model code

The first stage allows the oil to spread due to its gravitational potential and occurs rapidly (<1hr),
even for large spill. The time to the end of this stage, PhaseTime, is calculated by MOHID2 and
ADIOS2 as:

3
14

1

2
��
�

�
��
�

�

∆��
�

�
��
�

�
=

g
V

k
k

t
w

o
o υ

 where: k1,k2 = empirical coefficients whose value depend on the researcher
 Vo = volume of oil spilled
 �w = kinematic viscosity of water
 g = gravitational acceleration

w

oilw

ρ
ρρ −

=∆ = relative density difference between the water and oil

OILTRANS assumes that during the gravity spreading phase none of the weathering processes are
taking place. In essence, PhaseTime, to, is the starting time of the oil spill model. The InitialArea,
Ao, at the end of this gravity spreading phase is calculated by ADIOS2 and MOHID2 to be:

��
�

�
��
�

� ∆
= 2

5

2
1

4
2

w

o
o

gV
k
k

A
υ

π

For MOHID2 formulations, k1 & k2 = 1.14 & 1.45 respectively
For ADIOS2 formulations, k1 & k2 = 1.53 & 1.21 respectively

CONCAW

For the CONCAW implementation of the Fay formulation the spill areas for both the gravity
spreading phase and the viscous spreading phase are calculated over time.

Transition from the gravity spreading phase to the viscous spreading phase is assumed to occur
when the formulae predict spills of the same area. The time at which both formulae predict spills of
the same area is PhaseTime. The method is presented below:

Do While Area1 <= Area 2
 tgVArea ..14.1.1 2 ∆= π = area of gravity spreading

 t
gV

Area
w

..98.0.2
3
1

2
2

�
�

�

�

�
�

�

� ∆=
υ

π = area of viscous spreading

 t = t +10 increment time (in seconds)
End Do

PhaseTime = t
InitialArea = Area2

OILPOL

Development of OILTRANS Model code

The OILPOL model does not use the Fay spreading methodology for determining the time until
gravity spreading phase is complete, rather, the InitialArea, Ao, of the spill is calculated as:

() .81.2.
2

oo VA π=

Spreading of Spill

ADIOS2 & MOHID2

Both methods use the second phase of the Fay formulas, the so-called gravity viscous spreading.
Fay predicted the area, At, of the slick over time to be described by:

3
1

2
32

2
2 �

�

�

�

�
�

�

� ∆
=

w

o
t

tgV
kA

υ
π

Both methods approximate the Fay spreading with a diffusion process, where the diffusion
coefficients, Dx & Dy are given by:

t

gVk
DD

w

o
yx

1
16

3
1

22
2

�
�

�

�

�
�

�

� ∆
==

υ

In addition, in ADIOS2, a second spreading process designed to represent eddy diffusion of surface
waters is added to the Fay diffusion coefficients. Based on experimental results, a time dependant
diffusion parameter best represents the empirical results. The diffusion parameter, Deddy is
represented as:

Deddy = 0.033 t 0.16

The diffusion coefficients are then converted into uniformly distributed random velocities, ur & vr
in the range [–Ur, Ur] and [-Vr, Vr] for each particle as detailed below.

The relationship between the diffusion coefficients and the velocity ranges [–Ur, Ur] and [-Vr, Vr] is
expressed as:

t
D

U x
r δ

2
= ,

t

D
V y

r δ
2

=

 where: �t = timestep interval

Random velocities, ur & vr, (with a uniform distribution) inside the velocity ranges [–Ur, Ur] and [-
Vr, Vr] are then assigned to each particle in the following way;

() rr URRu .2cos 21 π=
() rr VRRv .2sin 21 π=

Development of OILTRANS Model code

 where: R1 & R2 are randomly generated numbers between 0 and 1.

An ‘origin’ particle which is not included in the Fay spreading processes is used as a reference point
around which to diffuse all other oil particles with the random velocities [-ur, ur], [-vr, vr] at each
time step by:

Px = Pox + (±)ur

Py = Poy + (±)vr

 where : Px = particle x location
 Py = particle y location
 Pox = origin particle x location
 Poy = origin particle y location

The ‘origin’ particle is free to advected by water currents, wind and stokes drift, thereby tracking
the centroid of the spill.

CONCAW

The process used in the CONCAW methodology is to calculate the fractional increase in the radius
of the theoretical area of the oil slick, CoefR, from one time step to another as:

π

π
1−

=
T

T

Area

Area

CoefR

 where: AreaT = Area of slick at current timestep
 AreaT-1 = Area of slick at previous timestep

The fractional increase in the radius of the slick is used to update each particles location with
respect to the ‘origin’ particle location by:

PxT = PoxT + [(PxT-1 - PoxT-1) * CoefR]
PyT = PoyT + [(PyT-1 - PoyT-1) * CoefR]

 where : Px = particle x location
 Py = particle y location
 Pox = origin particle x location
 Poy = origin particle y location
 T = current timestep
 T-1 = previous timestep

OILPOL

Development of OILTRANS Model code

In the OILPOL methodology the slick is assumed to spread as an ellipse with the major axis in the
direction of the wind. The length of the minor axis, Q after the spreading starts is given by a Fay-
like formula but with modified coefficients that were obtained by fitting to observed data, as:

() 4
1

3
1

13.1 tVQ ∆=

The downwind axis of the ellipse, R, is given by:

4
3

3
4

0034.0 tWQR +=

 where: W = wind speed (m/s)

The area of the slick, At at time t is therefore:

QRA π4
1=

The process used in the OILPOL methodology is similar to that of the CONCAW methodology,
namely, to calculate the fractional increase in the radius of the major and minor axes of the oil slick,
CoefR & CoefQ respectively, from one time step to the next. The fractional increase in the major
and minor axes of the slick are then used to update each particles location with respect to the
‘origin’ particle location in a manner similar to that outlined above in the CONCAW methodology.

Note: Currently OILTRANS assumes a constant wind direction for determining the spreading of
the slick using this methodology.

Evaporation

In OILTRANS the evaporation process can be calculated using two different methods; one,
evaporative exposure, proposed by Stiver and Mackay 1984, and one, a simplified empirical
formulation, proposed by Fingas 1998.

Another method, the pseudo-component method of Jones 1997, as used by ADIOS2 requires a
considerable amount of input data in relation to mean vapour pressure, solubility and molecular
weight of each pseudo-component of the oil. Jones compared the pseudo-component approach to
that of Fingas, and Stiver & Mackay and found for equivalent conditions, the pseudo-component
method gave similar results to Fingas, and only slightly underpredicted results from Stiver &
Mackay. Given the correlation between the pseudo-component method and the Fingas, and Stiver &
Mackay methods, only the former methods have been encoded as they require less detailed
information on oil type and constituents.

Stiver & Mackay

The evaporative exposure is given by the formula:

Development of OILTRANS Model code

()eGo
o

tee VfTT
TV

AK
dt

dVf
+−= 3.10

3.6exp(

 where: Vfe = volume fraction of evaporated oil
 Ke = mass transfer coefficient

 At = Area of slick at time t.
 Vo = volume of spill
 T = oil temperature (assumed equal to water temperature)
 To = initial boiling point of the oil
 Tg = distillation curve gradient

The mass transfer coefficient, Ke is given by: Ke = 1.5e-3 W0.78

The initial boiling point and the distillation curve gradient of the oil are determined from the API
density of the oil according to the following relationship (for crude oil)

To = 532.98 – 3.1295 API
Tg = 985.62 – 13.597 API

Implementation of the evaporative exposure formulation in the OILTRANS code takes the form:

()dtVfTT
TV

AK
dVf eGo

o

te
e +−= 3.10

3.6exp(

with the volume fraction of oil evaporated at each timestep being calculated. After each timestep the
value of Fe (total volume fraction of oil evaporated) is updated by dFe.

The mass fraction of oil evaporated, Mfe = Vfe .�oil

Fingas

The other option to calculate the evaporation of oil was proposed by Fingas and is based on the
variables of time and temperature. Fingas determined specific empirical equations for a wide variety
of oil types of the form:

)ln()(% tTM e βα +=

 where: %Me is the percentage (by weight) of evaporated oil
 �,� are empirical constants depending on oil type
 T is oil temperature (assumed equal to water temperature)
 t is time after spill in minutes

From the range of experiments conducted, Fingas proposed the following general equation:

%Me = [0.165(%D) + 0.045(T-15)]ln(t)

Development of OILTRANS Model code

 where: %D is the percentage by weight distilled at 180oC.

The volume fraction of oil evaporated, %Ve = %Me / �oil

Emulsification

Emulsification is the process by which water droplets are dispersed into the oil slick. When water-
in-oil emulsions form the physical properties and characteristics of the oil slick change
dramatically.

Stable emulsions typically contain 60%-90% water, expanding the volume of the oil slick by 2 to 5
times the original volume. Most significantly, the viscosity of the oil changes from typically a few
hundred mPas to about 100,000 mPas.

The formulation for the formation of water-in-oil emulsions in the OILTRANS code is based on the
most recent work of Fingas, 2011, and is based on the oil density, viscosity, asphaltene, resin and
saturates content of the oil.

The formulation defines the class of emulsion that may be formed; stable, mesostable, entrained or
unstable, and assigns values to increases in viscosity based on the class of emulsion formed.

The stability class of emulsion that would be formed is calculated as follows:

Stability Class = 12.3 + 0.259St – 1.601Rt – 17.2(A/Rt)

 – 0.50Vt3 + 0.002Rt3 + 0.001At3 + 8.51(A/Rt)3
 – 1.12ln(Vt) + 0.7ln(Rt) + 2.97ln(A/Rt)
 + 6e-8(Exp(Vt))2 – 1.96(Exp(A/Rt))2
 – 4e-6log(Dt)/(Dt)2 – 1.5e-4log(A/Rt)/(A/Rt)2

 where: St = transformed saturate content
 Rt = transformed resin content
 A/Rt = transformed asphaltene/resin ratio
 Vt = transformed natural logarithm of viscosity
 At = transformed asphaltene content
 Dt = transformed exponential of the oil density

The values of Stability Class assigned to each class of emulsion are given in the table below:

Table 1: Conditions for Emulsion Type Calculations
Calculated Stability Class
minimum maximum

Conditions State Error (%)

2.2 15 Stable 0
-12 -0.7 Mesostable 9

density >0.96 -18.3 -9.1
viscosity >6000

Entrained 7

-7.1 -39.1 density <0.85 or >1.0 Unstable 10

Development of OILTRANS Model code

viscosity <100 or >800000
asphaltenes or resins <1%

The viscosity of the resulting emulsion can be taken as the average of the types at a given time as
shown in the table below:

Table 2: Viscosity Increase from Starting Oil Viscosity

Viscosity Increase On Emulsion Type First Day Week Year
Entrained 1.9 1.9 2.1
Mesostable 7.2 11 32
Stable 405 1054 991
Unstable 0.99 1.0 1.0

The kinetics of emulsion formation have also been studied by Fingas 2011, and data are available to
compute the time to formation of the various emulsion types.

Application of the equations in the table below provide the time to formation of a particular water-
in-oil emulsion, for a given wave height.

Table 3: Time to Formation predictor from Wave Height

Equation Y = A + B / X1.5 Resulting Equation
Predictor A B R2
Stable 27.1 7520 0.51
Mesostable 47 49100 0.95
Entrained 30.8 18300 0.94
X = wave height in cm
Y = time to formation in minutes

Dispersion

Dispersion, or entrainment, occurs when fine droplets of oil are transferred into the water column
by wave action or turbulence. Large droplets (>70�m) tend to rise and will not stay in the water
column for more than a few seconds.

The dispersion process is based on the classic method of Delvigne and Sweeney 1988 who
developed a relationship for entrainment rate, Qd, as a function of droplet size and oil viscosity, as:

dSFdDCQ dd ∆= 7.057.0*

 where: Qd is the entrainment rate, (kg/m2s), for droplet diameter d, (m).
 C* is an empirical entrainment constant which depends on oil type and weathering state.
 Dd is the dissipated breaking wave energy per unit surface area, (J/m2)
 S is the fraction of sea surface covered by oil

Development of OILTRANS Model code

 F is the fraction of sea surface hit by breaking waves
 d is the droplet diameter
 �d is the oil particle interval diameter, (m)

C*, the entrainment constant, was fitted to a series of experimental data according to the following
relationships:

If (�/�o) < 132 (cSt), C* = exp[-0.1023 ln(�/�o) + 7.575]
If (�/�o) � 132 (cSt), C* = exp[-1.8927 ln(�/�o) + 16.313]

 where: � is the viscosity of the oil, (mPa/s)
 �o is the density of the oil, (g/cm3)

Dd, the dissipated wave energy, is given by:

Dd = 0.0034 �wgHbreak
2

 where: �w is the density of seawater (kg/m3)
 g is acceleration due to gravity
 Hbreak is the rms of breaking wave height (m)

Two methods exist within OILTRANS to calculate the rms of the breaking wave height, Hbreak. If
the windwavesmodel option is enabled, the breaking wave height is obtained from the SWAN
model output(s). If the windwavesmodel is not enabled, then the breaking wave height is calculated
according to the formula from the CERC Shore Protection Manual as;

�
�

�

�

�
�

�

�
�
�

�
�
�

�=
g

W
H break

2
10.243.0

.
2

1

 where: W10 is the wind speed at 10m above sea surface

S, the fraction of the sea surface covered by oil, is assumed as unity. (1.0)

F, the fraction of sea surface hit by breaking waves per unit time, is parameterised as follows:

if W10 < Wth, F = 3e-6(W10
3.5 / Tw)

if W10 > Wth, F = 0.032[(W10 - Wth) / Tw]

 where: Wth is the threshold windspeed for onset of breaking waves (~ 6m/s)
 Tw is the significant wave period (s)

Two methods exist within OILTRANS to calculate the significant wave period, Tw. If the
windwavesmodel option is enabled, the significant wave period is obtained from the SWAN model
output(s). If the windwavesmodel is not enabled, then the significant wave period is calculated
according to the formula from the CERC Shore Protection Manual as;

Development of OILTRANS Model code

��
�

�
��
�

�
=

g
W

Tw
10.13.8

�d, the oil particle interval diameter, is based on the mean droplet diameter, d50. The mean droplet
diameter d50 was curve fitted to data by Delvigne and Sweeney to form the following relationship:

d50 = 1818 E-0.5 (�/�o)0.34

 where: E is the wave energy dissipation rate per unit volume, (J/m3s),
 and set as 1e-3 for breaking waves.

The minimum droplet diameter, Dmin, is assumed to be 10% of the d50 value because volumes
below this size are relatively small and can be neglected.

The maximum droplet diameter, Dmax, is set to equal the mean, because in testing droplets larger
than d50 were found to resurface in less than one timestep, and so are not different to the surface
slick.

The oil particle interval diameter is then constructed by adopting 5No. size classes between Dmin
and Dmax, equally spaced on diameter, as:

�d = (Dmax - Dmin) / 5.0

Therefore, the total entrainment rate, Qtotal (kg/m2s), for all droplet size classes is:

� =
∆= 5

1

7.057.0*
i idtotal dSFdDCQ

And the total mass entrained, Ment (kg), per time step is equal to:

Ment = Qtotal * At * �t

 where: At is the area of slick at time t
 �t is the timestep interval

Density

The initial oil density is obtained from either the API gravity of the oil, or the density value and
reference temperature, both contained within the oil database. Only oils with densities lower than
water are modelled, as more dense oils will sink.

The change in oil density over time is related to three different processes; changing water
temperature, evaporation, and emulsification.

The change in density due to changing temperature can be expressed as:

()()refrefoil TTCDensT −−= 0.1ρρ

Development of OILTRANS Model code

 where: �oil is density of oil for given water temperature, T
 �ref is original (reference) density of oil at reference temperature Tref
 CDensT is an empirical constant (= 8e-4 (ref: ADIOS2))

The change in density due to evaporation can be expressed as:

()evaprefoil FCDensE.0.1 += ρρ

 where: CDensE is an empirical constant (= 0.18 (ref: ADIOS2))
 Fevap is the fraction of oil evaporated from the slick

The change in density due to emulsification can be expressed as:

() ()Υ−+Υ= 0.1refwoil ρρρ

 where: Y is the water content of the water-in-oil emulsion
 �w is the density of seawater

These three processes are combined in one single equation by Buchanan 1988 to give:

() ()() ()()refevaprefwoil TTCDensTFCDensE −−+Υ−+Υ= 0.1.0.10.1ρρρ

Viscosity
The change in oil viscosity over time is related to three different processes; changing water
temperature, evaporation, and emulsification.

The change in density due to changing temperature can be expressed using Andrade’s correlations
as:

�
�

�

�

�
�

�

�
−

= refTT
CT

refoil e
11

µµ

 where: �oil is viscosity of oil for given water temperature, T
 �ref is original (reference) viscosity of oil at reference temperature Tref
 CT is an empirical constant (= 5000 (ref: ADIOS2))

The change in viscosity to evaporation can be expressed using Mackay’s equation as:

evapFCE
refoil e .µµ =

 where: Fevap is the fraction of oil evaporated from the slick
 CE is an empirical constant (= 10.0 (ref: Reed 1998))

The change in viscosity due to emulsification can be expressed using Fingas’ data from Table 2 as:

Development of OILTRANS Model code

Emulrefoil V.µµ =

 where: Vemul is the interpolated viscosity multiplier from Table 2.

These three processes are combined in one single equation to give:

... .

11

evapref FCETT
CT

refemuloil eeV
�
�

�

�

�
�

�

�
−

= µµ

Development of OILTRANS Model code

IMPLEMENTATION

 do P = 1 to stepT external timestep loop
 do IT =1 to stepIT internal timestep loop

 if(ix(2) == pTS(n))then
 CALL InitialArea(RhoOil,DeltaRho,Phase1Time,AreaOil)
Spill Event ……
 CALL Distribute(AreaOil, x_diff,y_diff)
 CALL update_oil_particles(0, n, m, x_diff,y_diff)
 end if

 if(nParLeft > 0 .and. VolumeOil > 0)then
 VolumeBeach = VolumeOil * REAL(nParBeached)/REAL(nParLeft))
Beaching VolumeBeached = VolumeBeached + VolumeBeach
 nParLeft = nParLeft - nParBeached
 nParbeached = 0
 end if
 …..
 IF (Spreading) THEN
 CALL SpreadOptions(n,FirstAP,ElapsedTime,DeltaRho, &
Spreading AreaOil,VolumeOil,RhoOil,SprdCase,x_diff,y_diff)
 CALL update_oil_particles(SprdCase,n,m,x_diff,y_diff)
 END IF

 IF (Emulsification) THEN
Emulsion CALL Emulsify (n,ElapsedTime,FirstAP,RhoOil,ViscOil,&
 ResinOil,AsphOil,WaterContent,xviscemul)
 END IF

 IF (Evaporation) THEN
 CALL Evaporate (ElapsedTime,FirstAP,RhoOil,AreaOil, &
Evaporate ResinOil,AsphOil,MassSpill,MassEvap,WaterContent,MassOil)
 CALL Dissolution(ElapsedTime,WaterContent,AreaOil,MassDiss)
 END IF

 IF (Dispersion) THEN
Dispersion CALL Disperse (n,ElapsedTime,FirstAP,AreaOil,ViscOil, &
 RhoOil,par(:,pZ),MassOil,MassDisp)
 END IF

Density CALL Density (RhoOil,MassEvap,MassSpill,WaterContent,DeltaRho)

Viscosity CALL Viscosity (ViscOil,RhoOil,MassEvap,MassSpill, xviscemul)

 !update VolumeOil to reflect losses due oil weathering
 VolumeOil = VolumeSpill - VolumeBeached - VolumeEvap - VolumeDisp - VolumeDiss

Update call update_particles()

 end do internal timestep loop
 end do external timestep loop

Development of OILTRANS Model code

REFERENCES

ADIOS2, 2000. ADIOS (Automated Data Inquiry for Oil Spills) version 2.0.1 online help manual".
Hazardous Materials Response and Assessment Division, NOAA. Prepared for the U.S. Coast
Guard Research and Development Centre.

Buchannan, I., Hurford, N. 1988. Methods for predicting the physical changes of oil spilled at sea.
Oil and Chemical Pollution vol 4(4) pp311-328

CERC. 1984. Shore Protection Manual Vol.I. Coastal Engineering Research Centre, Dept of the
Army, Waterways Experiment Station, USACE, Vicksburg, MS, USA

CONCAW. 1983. van Oudenhoven, J., Draper, V., et al. Characteristics of petroleum and its
behavior at sea" CONCAWE Report No.8/83. Den Haag, November 1983.

Delvigne, G.A.L., Sweeney, C.E. 1988. Natural Dispersion of Oil. Oil Chem. Poll. 4:281-310

Fay, J. A. 1971. Physical processes in the spread of oil on a water surface. Proceedings of the Joint
Conference on the Prevention and Control of Oil Spills. Washington DC. American Petroleum
Institute p463-467

Fingas, M. 1997. The Evaporation of Oil Spills: Prediction of equations using distillation data.
Arctic and Marine OilSpill Program Technical Seminar, Environment Canada. 1997 Vol1:20 pp1-
20

Fingas, M. 2011. Models for Water-in-Oil Emulsion Formation in Chpt.10 of Oil Spill Science and
Technology, 2011.Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0

MOHID2.2003 downloaded from
http://maretec.mohid.com/PublicData/Products/Manuals/Mohid_Description.pdf

North, E. W., R. R. Hood, S.-Y. Chao, and L. P. Sanford. 2005. The influence of episodic events on
transport of striped bass eggs to an estuarine nursery area. Estuaries 28(1): 106-121.

North, E. W., R. R. Hood, S.-Y. Chao, and L. P. Sanford. 2006a. Using a random displacement
model to simulate turbulent particle motion in a baroclinic frontal zone: a new implementation
scheme and model performance tests. Journal of Marine Systems 60: 365-380.

North, E. W., Z. Schlag, R. R. Hood, L. Zhong, M. Li, and T. Gross. 2006b. Modeling dispersal of
Crassostrea ariakensis oyster larvae in Chesapeake Bay. Final Report to Maryland Department of
Natural Resources, July 31, 2006. 55 p.

North, E. W., Z. Schlag, R. R. Hood, M. Li, L. Zhong, T. Gross, and V. S. Kennedy. 2008. Vertical
swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-
tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology Progress Series 359: 99-
115.

Development of OILTRANS Model code

OILPOL. 2000. Rabeh, A.H., Lardner, R.W., Gunay, N. GulfSpill Version 2.0: a software package
for oil spills in the Arabian Gulf" Environmental Modelling and Software 15 (2000) 425-442

Stiver, W., Mackay D. 1984. Evaporation rate of spills of hydrocarbons and petroleum mixtures.
Environmental Science and Technology, 18(11): 834-840

Development of OILTRANS Model code

APPENDIX I: OILTRANS_data input file

$numparticles **NUMBER OF PARTICLES**
 Numpar = 100 Number of particles in simulation
$end
$timeparam **TIME PARAMETERS**
 Days = 6.916667 Number of days to run the model
 Iprint = 3600 Print interval for OILTRANS output (seconds)
 Dt = 3600 External timestep (duration between ROMS/SWAN model predictions (s))
 Idt = 120 Internal (particle tracking) timestep (s)
$end
$hydroparam **ROMS HYDRO MODEL PARAMETERS**
 Us = 20 No. of Rho grid s-levels in ROMS model
 ws = 21 No. of W grid s-levels in ROMS model
 tdim = 1 No. of timesteps in each ROMS hydro archive file
 hc = 0.2 Minimum depth – used in ROMS s-level transforms
 z0 = 0.0005 ROMS roughness parameter
 Vtransform = 1 flag for vertical transform applied (1- WikiROMS Eq.1, 2 – WikiROMS Eq.2, 3 – Song/Haidvogel 1994 Eq.)
 readZeta = .False. if TRUE, read sea surface height, zeta, from ROMS netCDF archive
 constZeta = 0 constant value for zeta if readZeta = .FALSE.
 readSalt = .True. if TRUE, read salinity from ROMS netCDF
 constSalt = 0 constant value for salinity if readSalt = .FALSE.
 readTemp = .True. if TRUE, read temperature from ROMS netCDF
 constTemp = 0 constant value for temperature if readTemp = .FALSE.
 readDens = .False. if TRUE, read density from ROMS netCDF
 constDens = 0 constant value for density if readDens = .FALSE.
 readU = .True. if TRUE, read U velocity from ROMS netCDF
 constU = 0 constant value for U velocity if readU = .FALSE.
 readV = .True. if TRUE, read V velocity from ROMS netCDF
 constV = 0 constant value for V velocity if readV = .FALSE.
 readW = .True. if TRUE, read W velocity from ROMS netCDF
 constW = 0 constant value for W velocity if readW = .FALSE.
 readAks = .True. if TRUE, read vertical salinity diffusion coefficient from ROMS netCDF
 constAks = 0 constant value for vertical salinity diffusion coefficient if readAks = .FALSE.
$end
$turbparam **TURBULENCE PARAMETERS**
 HturbOn = .False. Horizontal turbulence on (TRUE) or off (FALSE)
 VTurbOn = .False. Vertical turbulence on (TRUE) or off (FALSE)
 ConstantHTurb = 0 Constant value for horizontal turbulence if HTurbOn = TRUE
$end
$behavparam **BEHAVIOUR PARAMETERS** - NOT USED IN OILTRANS
 Behavior = 0 Behaviour type (passive, near surface, near bottom, larval, oyster, etc)
 OpenOceanBoundary = .True. Allow particles to escape from model domain, ie stick to open ocean boundary (TRUE)

Development of OILTRANS Model code

 mortality = .False. Allow particles to die (TRUE) or not (FALSE)
 deadage = 691200 Age at which particles dies (stops moving) (s)
 pediage = 345600 Age at which particle reaches max swimming speed and can settle (s)
 swimstart = 0 Age that swimming (or sinking) begins (s)
 swimslow = 0.005 Initial swimming speed (m/s)
 swimfast = 0.043 Max swimming speed (m/s)
 Sgradient = 1 Salinity gradient threshold that cues larval behaviour (psu/m)
 sink = -0.0003 Sinking velocity (m/s)
 Hswimspeed = 0.9 Tidal stream transport horizontal swimming speed (m/s)
 Swimdepth = 2 Depth of swimming during flood tides (m) above bottom
$end
$dvmparam **DIURNAL VERTICAL MIGRATION PARAMETERS** - NOT USED IN OILTRANS
 twistart = 4.801821 Time of twilight start(hr)
 twiend = 19.19956 Time of twilight end (hr)
 daylength = 14.39774 Length of a day (hr)
 Em = 1814.328 Irradiance at solar noon (uE. m^-2. s^-1)
 Kd = 1.07 Vertical attenuation coefficient
 thresh = 0.0166 Light threshold that cues behaviour (uE. m^-2. s^-1)
$end
$settleparam **SETTLEMENT MODULE PARAMETERS** - NOT USED IN OILTRANS
 settlementon = .False. Settlement module on (TRUE) or off (FALSE)
 holesExist = .False. Are there holes in the habitat polygons
 minpolyid = 101001 Lowest habitat polygon ID
 maxpolyid = 101006 Highest habitat polygon ID
 minholeid = 100101 Lowest hole number ID
 maxholeid = 100501 Highest hole number ID
 pedges = 36 Number of habitat polygon edge points (no of rows in habitat polygon file)
 hedges = 12 Number of hole edge points (no of rows in holes polygon file)
$end
$convparam **CONVERSION PARAMETERS**
 PI = 3.141593 pi
 Earth_Radius = 6378000 Equatorial radius of the earth
 SphericalProjection = .True. Use spherical projection from ROMS
 latmin = 53.5 Minimum latitude for spherical projection
 lonmin = -10 Minimum longitude for spherical projection
$end
$romsgrid **ROMS netCDF model grid file & path
 NCgridfile = '/home/marcel/PromINPUT/Connemara/GRID/connemara.nc'
$end
$romsoutput **ROMS netCDF model archived hydrodynamics file(s) and path
 prefix = '/home/marcel/PromOUTPUT/Connemara/OILTRANS/connemara_his_' NetCDF input file name prefix
 suffix = '.nc' NetCDF input file name suffix
 filenum = 3363 Number of first netCDF filename to use
 numdigits = 4 Number of digits in netCDF filename(s)
 startfile = .False. Is this the first file of a simulation (ie does it have initial timestep data)
$end

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

 $p
ar

lo
c

**

PA
R

T
IC

LE
 L

O
C

A
T

IO
N

 IN
PU

T
FI

LE
**

 p

ar
fi

le

=

'In
itP

ar
Lo

c.
cs

v'

In

iti
al

 p
ar

tic
le

 lo
ca

tio
ns

 in
pu

t f
ile

 n
am

e
(n

ot
e

fi
le

 p
at

h
m

us
t b

e
in

cl
ud

ed
 if

 fi
le

 n
ot

 in
 s

am
e

fo
ld

er
 a

s
th

e
m

od
el

 e
xe

cu
ta

bl
e

$e
nd

$h

ab
po

ly
lo

c

**

H
A

B
IT

A
T

PO
LY

G
O

N
 L

O
C

A
T

IO
N

 IN
PU

T
FI

LE
(S

)*
*

–
N

O
T

U
SE

D
 IN

 O
IL

TR
A

N
S

 h
ab

ita
tfi

le

=

'h
ab

ita
t.c

sv
'

H
ab

ita
t l

oc
at

io
ns

 in
pu

t f
ile

 n
am

e
 h

ol
ef

ile

=
'h

ol
es

.c
sv

'

H
ab

ita
t h

ol
es

 lo
ca

tio
ns

 in
pu

t f
ile

 n
am

e
$e

nd

$o
ut

pu
t

**

O
U

TP
U

T
R

E
LA

TE
D

 V
A

R
IA

B
LE

S*
*

- N
O

T
U

SE
D

 IN
 O

IL
TR

A
N

S
 o

ut
pa

th

 =
 '.

/o
ut

pu
t/'

Fo

ld
er

 s
tr

uc
tu

re
 to

 w
ri

te
 o

ut
pu

t t
o

 N
C

O
ut

Fi
le

=
'o

ut
pu

t'

N
am

e
of

 n
et

C
D

F
ou

tp
ut

 fi
le

(s
)

 o
ut

pa
th

G
iv

en

=
.F

al
se

.

if
 T

R
U

E
 th

en
 fi

le
s

ar
e

w
ri

tte
n

to
 ‘o

ut
pa

th
’

 w
ri

te
C

SV

=

.T
ru

e.

If

 T
R

U
E

 th
en

 w
ri

te
 .c

sv
 o

ut
pu

t f
ile

s
 w

ri
te

N
C

=

.F
al

se
.

If

 T
R

U
E

 th
en

 w
ri

te
 n

et
C

D
F

ou
tp

ut
 fi

le
s

 N
C

tim
e

=

0

Ti
m

e
in

te
rv

al
 b

et
w

ee
n

cr
ea

tio
n

of
 n

ew
 n

et
C

D
F

ou
tp

ut
 fi

le
s

 S
V

N
_V

er
si

on

=
' '

ne

tC
D

F
ou

tp
ut

 fi
le

(s
) m

et
ad

at
a

 R
un

N
am

e

=

' '

ne
tC

D
F

ou
tp

ut
 fi

le
(s

) m
et

ad
at

a
 E

xe
D

ir

=

' '

ne
tC

D
F

ou
tp

ut
 fi

le
(s

) m
et

ad
at

a
 O

ut
D

ir

=

' '

ne
tC

D
F

ou
tp

ut
 fi

le
(s

) m
et

ad
at

a
 R

un
B

y

=
' '

ne

tC
D

F
ou

tp
ut

 fi
le

(s
) m

et
ad

at
a

 I
ns

tit
ut

io
n

=
' '

ne

tC
D

F
ou

tp
ut

 fi
le

(s
) m

et
ad

at
a

 S
ta

rte
dO

n

=

' '

ne
tC

D
F

ou
tp

ut
 fi

le
(s

) m
et

ad
at

a
$e

nd

$o
th

er

**
O

TH
E

R
 P

A
R

A
M

E
TE

R
S

 s
ee

d

=

9

Se

ed
 v

al
ue

 fo
r r

an
do

m
 n

um
be

r g
en

er
at

or

 E
rr

or
Fl

ag

=

0

W

ha
t t

o
do

 if
 a

n
er

ro
r i

s
en

co
un

te
re

d
(0

-s
to

p,
 1

-r
et

ur
n

pa
rt

ic
le

 to
 p

re
vi

ou
s

lo
ca

tio
n,

 2
-k

ill
 p

ar
tic

le
, e

tc
)

 B
ou

nd
ar

yB
LN

s

 =

 .F
al

se
.

C
re

at
e

SU
R

FE
R

 b
la

nk
in

g
fi

le
 o

f b
ou

nd
ar

ie
s

(T
R

U
E

 =
 y

es
, F

A
LS

E
 =

 n
o)

 S

al
tT

em
pO

n

=
.F

al
se

.
C

al
cu

la
te

 s
al

in
ity

 a
nd

 te
m

pe
ra

tu
re

 a
t p

ar
tic

le
 lo

ca
tio

n
 T

ra
ck

C
ol

lis
io

ns

=

.F
al

se
.

W
ri

te
 b

ot
to

m
 h

it
an

d
la

nd
 h

it
fil

es

 W
ri

te
H

ea
de

rs

=
.F

al
se

.
W

ri
te

 .t
xt

 fi
le

s
w

ith
 c

ol
um

n
he

ad
er

s
 W

ri
te

M
od

el
Ti

m
in

g
 =

 .F
al

se
.

w
ri

te
 .c

sv
 fi

le
 w

ith
 m

od
el

 ti
m

in
gs

 i

jb
uf

f

=
4

N
um

be
r o

f e
xt

ra
 e

le
m

en
ts

 to
 re

ad
 o

n
ev

er
y

si
de

 o
f t

he
 p

ar
tic

le
(s

)
 O

ilO
n

=
.T

ru
e.

A

ct
iv

at
e

an
d

us
e

th
e

O
IL

 m
od

ul
es

 (T
R

U
E

 =
 y

es
, F

A
LS

E
 =

 n
o)

$e

nd

$o
ilp

ar
am

s

**
O

IL
 M

O
D

U
LE

 P
A

R
A

M
E

TE
R

S
 V

ol
um

eS
pi

ll

=
10

0

V
ol

um
e

of
 o

il
sp

ill
 (m

3)

 S
ec

Sp
ill

=

0

St

ar
tin

g
tim

e
of

 o
il

sp
ill

 w
rt

 s
im

ul
at

io
n

st
ar

t t
im

e
(s

)
 A

PI

=
37

O
il

A
PI

 g
ra

vi
ty

 O

il_
D

en
s

=
83

9

D
en

si
ty

 o
f O

il
(k

g/
m

3)

 O
il_

D
en

s_
R

ef
T

=
28

8

R
ef

er
en

ce
 te

m
pe

ra
tu

re
 a

t w
hi

ch
 d

en
si

ty
 is

 c
al

cu
la

te
d

(o
C

)
 W

at
er

te
m

p

=

15
.0

W
at

er
 te

m
pe

ra
tu

re
 (d

eg
C

) –
 n

ot
 u

se
d

an
ym

or
e

in
 O

IL
TR

A
N

S
 D

yn
_V

is
c

=
0.

04
73

D

yn
am

ic
 v

is
co

si
ty

 o
f o

il
(c

P)

 K
in

_V
is

c

=

0.
00

00
56

K

in
em

at
ic

 v
is

co
si

ty
 o

f o
il

(c
St

)
 D

yn
_V

is
c_

R
ef

T

=

27
3

R

ef
er

en
ce

 te
m

pe
ra

tu
re

 a
t w

hi
ch

 d
yn

am
ic

 v
is

co
si

ty
 is

 c
al

cu
la

te
d

(o
C

)
 K

in
_V

is
c_

R
ef

T

=

27
3

R

ef
er

en
ce

 te
m

pe
ra

tu
re

 a
t w

hi
ch

 k
in

em
at

ic
 v

is
co

si
ty

 is
 c

al
cu

la
te

d
(o

C
)

 C
ut

_U
ni

t

=

'v
ol

um
e'

U

ni
ts

 b
y

w
hi

ch
 o

il
pr

op
er

tie
s

ar
e

de
te

rm
in

ed
 (v

ol
um

e,
 w

ei
gh

t)

Development of OILTRANS Model code

 Oil_Asph = 0.02 Asphaltene content of oil
 Oil_Resin = 20 Resin content of oil
 Oil_Sat = 0.842 Saturates content of oil
 Cut_Temp = 310,368,384,399,415,428,462,486,0.0,0.0,0.0,0.0,0.0,0.0,0.0 Temperature of each oil cut at which properties are determined
$end
$oilprocs **OIL PROCESSES FOR MODELLING
 Spreading = .False. Turn on (TRUE) or off (FALSE) mechanical spreading of oil slick
 AreaOption = 'ADIOS2' Method for calculating initial area of oil slick (ADIOS2, MOHID, CONCAW, OILPOL)
 SprdOption = 'ADIOS2' Method for calculating mechanical spreading of oil slick ((ADIOS2, MOHID, CONCAW, OILPOL)
 Evaporation = .False. Turn on (TRUE) or off (FALSE) evaporation of oil slick
 EvapOption = 'FINGAS' Method ofor calculating evaporation from oil slick (FINGAS, MACKAY)
 Emulsification = .False. Turn on (TRUE) or off (FALSE) emuslification of oil slick
 Dispersion = .False. Turn on (TRUE) or off (FALSE) vertical dispersion of oil slick by wave action
 Langmuir = .False. Turn on (TRUE) or off (FALSE) movement of oil slick by langmuir circulation
 Stokes = .False. Turn on (TRUE) or off (FALSE) movement of oil slick by stokes drift
 Wind = .False. Turn on (TRUE) or off (FALSE) movement of oil slick by wind drift
$end
$windswaves **WINDS & WAVES MODULE PARAMETERS
 WindWaveModel = .False. Use SWAN model predictions
 swan_prefix = '/swan_his_' SWAN model output file prefix
 swan_filenum = 1000 Number of first SWAN filename to use
 swan_suffix = '.nc' SWAN input file name suffix
 SigWaveHeight = 10 Constant value for significant wave height if WindWaveModel = FALSE (recalculated in OILTRANS)
 SigWavePeriod = 5 Constant value for significant wave period if WindWaveModel = FALSE
 SigWaveLength = 5 Constant value for significant wave length if WindWaveModel = FALSE
 MeanWavePeriod = 5 Constant value for mean wave period if WindWaveModel = FALSE
 UWind_10 = 2 Constant value for 10m U wind component if WindWaveModel = FALSE
 VWind_10 = 0 Constant value for 10m V wind component if WindWaveModel = FALSE
 PeakDirection = 270 Constant value for peak wave direction if WindWaveModel = FALSE
 PeakWaveLength = 10 Constant value for peak wave length if WindWaveModel = FALSE
 MixingDepth = 5 Constant value breaking wave mixing depth if WindWaveModel = FALSE (recalculated in OILTRANS)
 Cd = 0.001 Constant value for drag coefficient if WindWaveModel = FALSE
 Disper = 0.001 Constant value for wave energy dispersion if WindWaveModel = FALSE
$end

Development of OILTRANS Model code

APPENDIX II: OILTRANS flow chart

Development of OILTRANS Model code

Development of OILTRANS Model code

Development of OILTRANS Model code

��������	

��
����
�����

������������
�
�
��

��
��
���
������

�� �� ������ ����
��

��
�

�� ��!�
��

��
!��"��!���

������#���

��������� ������$ ��

��
�
%&�����!�

	�

�������'
��

������������

��
!��"��!���

��������� ������$ ��

��

�!� ��(�$�����
��

�!� ��(�

�)���������
��

�)�������

����� �����

����������
��

��������

�������

*��$�����

	�

������������$ ��

	�

Development of OILTRANS Model code

(�������	

(��+�&�)�

(�������

Development of OILTRANS Model code

APPENDIX III: OILTRANS CODE

Development of OILTRANS Model code

Subroutine INITOIL
!**************************************
!* Subroutine InitOil *
!**************************************
SUBROUTINE InitOilModel(RhoOil,OilDensity,OilDensity_RefT,DeltaRho,ViscOil)

USE PARAM_MOD, ONLY: Cut_Unit,Cut_Temp,Oil_Dens,WaterTemp, Oil_Dens_RefT,API,Dyn_Visc,Dyn_Visc_RefT, &
 Kin_Visc,Kin_Visc_RefT

IMPLICIT NONE

!I/O variables
DOUBLE PRECISION, INTENT(OUT):: RhoOil,OilDensity,OilDensity_RefT,DeltaRho,ViscOil

!Local variables
DOUBLE PRECISION:: SGOil15 !Specific gravity of oil at 15degC
DOUBLE PRECISION:: RhoOil15 !Density of oil at 15degC (kg/m3)
INTEGER:: i, n, NumCuts !counters
LOGICAL:: novalue !logic controllers
DOUBLE PRECISION:: LowPresTemps(5) !array for holding converted 40mmHG pressure temperatures

!***************************
!* INTIALIsE VARIABLES *
!***************************
! Equates to 200.0, 225.0, 250.0, 275.0, 300.0 degC at 40mmHg
LowPresTemps = (/307.8, 337.7, 365.8, 394.9, 424.0/) !(K)
! see BPO Crude Oil Analysis Data Bank User's Guide Methods
! Taken from standard pressure-temperature nomograph

novalue = .FALSE.

!*******************************
!* INTIALISE OIL PROPERTIES *
!*******************************

!Determine no. of cuts for volume distillation only
!All other options use the ADIOS correlation eqn for
!pseudocomponent evaporation
SELECT CASE (trim(adjustl(Cut_Unit)))
 CASE ("-----")
 NumCuts = 0

 CASE ("weight")
 NumCuts = 0

 CASE ("volume")
 n = 1
 NumCuts = 0
 !determine number of cuts
 DO WHILE (.NOT.novalue .AND. n < 16) !n = 15 [max number of cuts (10@760mmHg & 5@40mmHg)]
 IF (Cut_Temp(n) == 0.0) THEN
 novalue = .TRUE.
 ELSE
 NumCuts = n
 n = n + 1
 END IF
 END DO
 !determine if cuts have been made at reduced pressure
 i = 1

Development of OILTRANS Model code

 DO n = 1, NumCuts-1
 IF (Cut_Temp(n) > Cut_Temp(n+1)) THEN !if temperature steps down => reduced pressure distillation
 Cut_Temp(n+1) = LowPresTemps(i) + 273.15 !assign temp correction based on P-T nomograph
 i = i + 1
 END IF
 END DO

 CASE DEFAULT
 WRITE(*,*)'Error: Cut_Unit not defined'
 WRITE(*,*)'*** FATAL ERROR - STOP ***'
 STOP

END SELECT

!Determine initial oil density
IF (Oil_Dens > 0.0) THEN
 RhoOil = Oil_Dens * (1.0 - CDensT * ((WaterTemp+273.15) - Oil_Dens_RefT)) !actual density of spilled oil at ocean temperature (kg/m3)
 OilDensity = Oil_Dens
 OilDensity_RefT = Oil_Dens_RefT
ELSEIF (API > 0.0) THEN
 SGOil15 = 141.5 / (131.5 + API) !specific gravity of spilled oil at reference temp (15.5degC) - from API standards
 RhoOil15 = SGOil15 * RhoFWater15 !density of spilled oil at reference temp (15.5degC)
 RhoOil = RhoOil15 * (1.0 - CDensT * (WaterTemp - WaterTemp15)) !actual density of spilled oil at ocean temperature (kg/m3)
 OilDensity = RhoOil15 !Reference oil density for subroutine DENSITY
 OilDensity_RefT = WaterTemp15 + 273.15 !reference oil temperature for subroutine DENSITY
ELSE
 WRITE(*,*)'No value DENSITY associated with this oil'
 WRITE(*,*)'No modelling can be done'
 WRITE(*,*)'*** FATAL ERROR - STOP ***'
 STOP
END IF

DeltaRho = (RhoWater - RhoOil) / RhoWater !relative density difference between water and oil densities

!Determine initial oil dynamic viscosity
IF (Dyn_Visc > 0.0) THEN
 ViscOil = 1000.0 * Dyn_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Dyn_Visc_RefT))) !Dynamic (kg/ms -> cP)
ELSE
 ViscOil = Kin_Visc * exp(ViscCt * 1.0/(WaterTemp+273.15)) - (1.0/Kin_Visc_RefT))) !Kinematic (m2/s -> cSt)
 write(*,*)'kin:',viscoil
 ViscOil = 1000.0 * ViscOil * RhoOil !Dynamic (cP)
END IF

write(*,*)viscoil

RETURN

END SUBROUTINE InitOilModel

Subroutine INITIALAREA
!******************************
!* Subroutine InitialArea *
!******************************
SUBROUTINE InitialArea(RhoOil,DeltaRho,Phase1Time,OilArea)
!Calculates the time to the end of the gravity-inertial spreading phase
!(which we don't model)
!and calculates the area of the spreaded oil at the end of that phase.
USE PARAM_MOD, ONLY: AreaOption, pi, VolumeSpill

IMPLICIT NONE

Development of OILTRANS Model code

!I/O variables
DOUBLE PRECISION, INTENT(IN) :: RhoOil, DeltaRho
INTEGER, INTENT(OUT):: Phase1Time !Computed time to gravity-inertial spreading phase (sec)
DOUBLE PRECISION, INTENT(OUT) :: OilArea

!Local variables
DOUBLE PRECISION:: Area1
DOUBLE PRECISION:: Area2
DOUBLE PRECISION:: Time

!When oil is denser than surrounding water, oil will sink => no spreading
IF (RhoOil > RhoWater) THEN
 !Oil is denser than water => no surface spreading
 RETURN
END IF

SELECT CASE (F_UpCase(trim(adjustl(AreaOption))))

 CASE ("MOHID2")
 !MOHID Description, 2003
 !downloaded from
 !http://maretec.mohid.com/PublicData/Products/Manuals/Mohid_Description.pdf
 OilArea = pi * (1.45**4.0 / 1.14**2.0) * 0.25 * (VolumeSpill**5.0 * Gravity * DeltaRho / (KinViscWater**2.0))**(1.0/6.0)
 Phase1Time = nint((0.725/0.570)**4.0 * (VolumeSpill / (KinViscWater * Gravity * DeltaRho))**(1.0/3.0))

 CASE ("ADIOS2")
 !NOAA, 2000
 !"ADIOS (Automated Data Inquiry for Oil Spills)
 !version 2.0.1 online help manual"
 !Hazardous Materials Response and Assessment Division,NOAA.
 !Prepared for the U.S. Coast Guard Research and Development Center,
 OilArea = pi * (1.21**4.0 / 1.53**2.0) * (VolumeSpill**5.0 * Gravity * DeltaRho / (KinViscWater**2.0))**(1.0/6.0)
 Phase1Time = nint((1.21/1.53)**4.0 * (VolumeSpill / (KinViscWater * Gravity * DeltaRho))**(1.0/3.0))

 CASE ("CONCAW")
 !van Oudenhoven, J., Draper, V., et al 1983
 !"Characteristics of petroleum and its behavior at sea"
 !CONCAWE Report No.8/83. Den Haag, November 1983.
 Time = 0.00 !seconds (ie: almost instantaneous)
 Area1 = 0.0 !gravity-inertia
 Area2 = 0.0 !gravity-viscous
 DO WHILE (Area1 < Area2) !until gravity-viscous regime reached
 Area1 = pi * (1.14**2.0) * (DeltaRho * Gravity * VolumeSpill)**0.5 * Time
 Area2 = pi * (0.98**2.0) * ((DeltaRho * Gravity * (VolumeSpill**2.0)) / (KinViscWater**0.5))**(1.0/3.0) * (Time**0.5)
 Time = Time + 10.0
 END DO
 OilArea = Area2 !Area at start of gravity-viscous regime
 Phase1Time = nint(Time) !Time since spill to start of gravity-viscous regime

 CASE ("OILPOL") !GULFSPILL
 !Rabeh, A.H., Lardner, R.W., Gunay, N. 2000
 !"GulfSpill Version 2.0: a software package for oil spills in the Arabian Gulf"
 !Environmental Modelling and Software 15 (2000) 425-442
 OilArea = pi * (2.81 * sqrt(VolumeSpill))**2.0
 Phase1Time = nint(0.00)

 CASE DEFAULT
 WRITE(*,*)' Case not encoded'
 WRITE(*,*)'No INITIAL SPILL AREA calculated'
 WRITE(*,*)'****** PROGRAM TERMINATING ******'
 OilArea = 0.0

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

P
ha

se
1T

im
e

=
0.

0
 E

N
D

 S
E

LE
C

T

 R
E

T
U

R
N

 E

N
D

 S
U

B
R

O
U

T
IN

E
 In

iti
al

A
re

a

S
ub

ro
ut

in
e

D
IS

TR
IB

U
TE

!*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

!*

 S
ub

ro
ut

in
e

D
is

tri
bu

te

*
!*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

S
U

B
R

O
U

T
IN

E
 D

is
tr

ib
ut

e(
O

ilA
re

a,
 X

D
iff

, Y
D

iff
)

!In
iti

al
ly

 ra
nd

om
ly

 d
is

tri
bu

te
 p

ar
tic

le
s

us
in

g
a

no
rm

al
 d

is
tri

bu
tio

n
!th

ro
ug

ho
ut

 th
e

th
eo

re
tic

al
 F

ay
 a

re
a

of
 s

pi
ll

U
S

E
 P

A
R

A
M

_M
O

D
,

O
N

LY
: p

i
IM

P
LI

C
IT

 N
O

N
E

 !I/

O
 v

ar
ia

bl
es

D

O
U

B
LE

 P
R

E
C

IS
IO

N
, I

N
T

E
N

T
(I

N
):

: O
ilA

re
a

D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(O
U

T
):

: X
D

iff

D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(O
U

T
):

: Y
D

iff

 !L
oc

al
 v

ar
ia

bl
es

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

ra
n

!h

ol
de

r
fo

r
ra

nd
om

 n
um

be
r

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
an

g

!r
an

do
m

ly
 g

en
er

at
ed

 a
ng

le
 (0

 <
 a

ng
 <

 2
pi

)
D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

di
st

!r
an

do
m

ly
 g

en
er

at
ed

 d
is

ta
nc

e
(0

 <
 d

is
t <

 R
ad

iu
s)

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

le
nR

!(
m

)
In

iti
al

 R
ad

iu
s

of
 s

pi
lle

d
oi

l a
t e

nd
 o

f i
ne

rti
al

 s
pr

ea
di

ng

 le
nR

 =
 s

qr
t(

O
ilA

re
a

/ p
i)

 C
A

LL
 r

an
do

m
_n

um
be

r(
ra

n)

an
g

=
ra

n
*

pi
 *

 2
.0

 C

A
LL

 r
an

do
m

_n
um

be
r(

ra
n)

di

st
 =

 ra
n

*
le

nR

 X
D

iff
 =

 d
is

t *
 c

os
(a

ng
)

Y
D

iff
 =

 d
is

t *
 s

in
(a

ng
)

 E
N

D
 S

U
B

R
O

U
T

IN
E

 D
is

tr
ib

ut
e

 S
ub

ro
ut

in
e

up
da

te
_o

il_
pa

rt
ic

le
s

!*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

!*

 S
ub

ro
ut

in
e

up
da

te
_o

il_
pa

rti
cl

es
*

!*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

S
U

B
R

O
U

T
IN

E
 u

pd
at

e_
oi

l_
pa

rti
cl

es
(s

, n
, m

, p
ar

am
_1

, p
ar

am
_2

)
 U

S
E

 P
A

R
A

M
_M

O
D

,

O
N

LY
: i

dt
,n

um
pa

r,
pi

 I

M
P

LI
C

IT
 N

O
N

E

 !I/
O

 v
ar

ia
bl

es

IN
T

E
G

E
R

, I
N

T
E

N
T

(I
N

)
::

s,
n,

m

D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(I
N

):
: p

ar
am

_1
, p

ar
am

_2

 !lo
ca

l v
ar

ia
bl

es

Development of OILTRANS Model code

DOUBLE PRECISION :: ran1,ran2,Ud,Vd

SELECT CASE (s)

 !Initial distribution after release
 CASE (0)
 par(m,pnX) = par(m,pX) + param_1
 par(m,pnY) = par(m,pY) + param_2

 !MOHID Diffusion
 CASE(1)
 CALL random_number(ran1)
 CALL random_number(ran2)

 Ud = ran1 * cos(2.0 * pi * ran2) * param_1 !param_1 = DiffVelocity
 Vd = ran1 * sin(2.0 * pi * ran2) * param_2 !param_2 = DiffVelocity

 par(m,pnX) = par(m,pX) + (Ud * idt)
 par(m,pnY) = par(m,pY) + (Vd * idt)

 !ADIOS spreading radius (only using CoefR: param_1)
 CASE(2)
 CALL random_number(ran1)
 CALL random_number(ran2)

 Ud = ran1 * cos(2.0 * pi * ran2) * param_1 !param_1 = DiffVelocity
 Vd = ran1 * sin(2.0 * pi * ran2) * param_1 !param_1 = DiffVelocity

 par(m,pnX) = par(m,pX) + (Ud * idt)
 par(m,pnY) = par(m,pY) + (Vd * idt)

 !CONCAW circular spreading radius
 CASE(3)
 par(m,pnX) = ((par(m,pX) - par((((numpar/nts)*(n-1))+1),pX)) * param_1) + par((((numpar/nts)*(n-1))+1),pX)
 par(m,pnY) = ((par(m,pY) - par((((numpar/nts)*(n-1))+1),pY)) * param_1) + par((((numpar/nts)*(n-1))+1),pY)

 !OILPOL ellipsical spreading radius
 CASE(4)
 par(m,pnX) = ((par(m,pX) - par((((numpar/nts)*(n-1))+1),pX)) * param_1) + par((((numpar/nts)*(n-1))+1),pX)
 par(m,pnY) = ((par(m,pY) - par((((numpar/nts)*(n-1))+1),pY)) * param_2) + par((((numpar/nts)*(n-1))+1),pY)

 CASE DEFAULT !Initial distribution of particels
 par(m,pnX) = par(m,pX)
 par(m,pnY) = par(m,pY)

END SELECT

par(m,pX) = par(m,pnX)
par(m,pY) = par(m,pnY)
par(m,pZ) = par(m,pnZ)

RETURN
END SUBROUTINE update_oil_particles

Subroutine SPREADOPTIONS
**
!* Subroutine SpreadOptions *
!**
SUBROUTINE SpreadOptions(n,FirstAP,ElapsedTime,DeltaRho,OilArea,VolumeOil, ,SprdCase,CoefR,CoefQ)

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

U
S

E
 P

A
R

A
M

_M
O

D
,

O
N

LY
: P

I,S
pr

dO
pt

io
n,

id
t,n

um
pa

r,
U

w
in

d_
10

,V
w

in
d_

10

 IM
P

LI
C

IT
 N

O
N

E

 IN
T

E
G

E
R

, I
N

T
E

N
T

(I
N

)
::

n,
 E

la
ps

ed
Ti

m
e

LO
G

IC
A

L,
 IN

T
E

N
T

(I
N

)
::

Fi
rs

tA
P

(n
)

D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(I
N

)
::

D
el

ta
R

ho
, V

ol
um

eO
il,

R
ho

O
il

 D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(I
N

O
U

T
)

::
O

ilA
re

a
 IN

T
E

G
E

R
, I

N
T

E
N

T
(O

U
T)

 ::
 S

pr
dC

as
e

D
O

U
B

LE
 P

R
E

C
IS

IO
N

, I
N

T
E

N
T

(O
U

T
)

::
C

oe
fR

, C
oe

fQ

 D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
W

in
dS

pe
ed

!M

O
H

ID

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
D

iff
C

oe
f

!M
O

H
ID

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

D
iff

V
el

oc
ity

!M

O
H

ID

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
be

ta

!M
O

H
ID

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

be
ta

_o
ld

!M

O
H

ID

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
au

x1

!M
O

H
ID

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

au
x2

!M

O
H

ID

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
A

re
a

!C
O

N
C

A
W

E
 &

 A
D

IO
S

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

A
re

a2

!C
O

N
C

A
W

E
 &

 A
D

IO
S

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

A
re

a3

!C
O

N
C

A
W

E
 &

 A
D

IO
S

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

M
ax

A
re

a

!C

O
N

C
A

W
E

 &
 A

D
IO

S

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
D

el
ta

R

!C

O
N

C
A

W
E

 &
 A

D
IO

S

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
D

el
ta

Q

!O

IL
P

O
L

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
le

nR

!A
D

IO
S

D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

le
nQ

!O

IL
P

O
L

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
le

nR
1

!O
IL

P
O

L
D

O
U

B
LE

 P
R

E
C

IS
IO

N
::

le
nQ

1

!O

IL
P

O
L

D
O

U
B

LE
 P

R
E

C
IS

IO
N

::
D

fa
y

!A
D

IO
S

2
 !s

av
e

va
lu

es
 o

n
ex

it
S

A
V

E
::

be
ta

_o
ld

,le
nR

1,
le

nQ
1

 S
E

LE
C

T
 C

A
S

E
 (

F
_U

pC
as

e(
S

pr
dO

pt
io

n)
)

!F

A
Y

 b
as

ed
 m

et
ho

d

C
A

S
E

 (
"M

O
H

ID
2"

)

!M

O
H

ID
 D

es
cr

ip
tio

n,
 2

00
3

!d
ow

nl
oa

de
d

fr
om

!h

ttp
://

m
ar

et
ec

.m
oh

id
.c

om
/P

ub
lic

D
at

a/
P

ro
du

ct
s/

M
an

ua
ls

/M
oh

id
_D

es
cr

ip
tio

n.
pd

f

!&

 w
ith

 re
fe

re
nc

e
to

 s
ou

rc
e

co
de

.

S

pr
dC

as
e

=
1

be

ta
 =

 p
i *

 (
(1

.4
5*

*2
)/

4.
0)

 *
 (

D
el

ta
R

ho
 *

 G
ra

vi
ty

 *
 (

V
ol

um
eO

il*
*2

)
/ s

qr
t(

K
in

V
is

cW
at

er
))

**
(1

.0
/3

.0
)

IF
 (

Fi
rs

tA
P

(n
))

 T
H

E
N

be

ta
_o

ld
 =

 b
et

a

E
N

D
 IF

au
x1

 =
 b

et
a_

ol
d

au

x2
 =

 O
ilA

re
a/

au
x1

be

ta
_o

ld
 =

 b
et

a

A

re
a

 =
 b

et
a

*
sq

rt(
(a

ux
2)

**
2

+
ID

T
)

if(
A

re
a

<
O

ilA
re

a)
th

en

A

re
a

=
O

ilA
re

a

en

d
if

D
iff

C
oe

f =
 (p

i *
 (

0.
72

5*
*2

.0
))

/1
6.

0
*

((
D

el
ta

R
ho

 *
 G

ra
vi

ty
 *

 (
V

ol
um

eO
il*

*2
.0

))

&

/ s

qr
t(

K
in

V
is

cW
at

er
))

**
(1

.0
/3

.0
)

&

*

(1
.0

/ s
qr

t (
R

E
A

L(
E

la
ps

ed
Ti

m
e,

ki
nd

(1
))

))

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

D
iff

V
el

oc
ity

 =
 s

qr
t (

(2
.0

 *
 D

iff
C

oe
f)

 /
ID

T
)

C
oe

fR
 =

 D
iff

V
el

oc
ity

C

oe
fQ

 =
 D

iff
V

el
oc

ity

!F

ay
 b

as
ed

 m
et

ho
d

C

A
S

E
 (

"A
D

IO
S

2"
)

!N
O

A
A

, 2
00

0

!"

A
D

IO
S

 (
A

ut
om

at
ed

 D
at

a
In

qu
iry

 fo
r

O
il

S
pi

lls
)

!v
er

si
on

 2
.0

.1
 o

nl
in

e
he

lp
 m

an
ua

l"

!H

az
ar

do
us

 M
at

er
ia

ls
 R

es
po

ns
e

an
d

A
ss

es
sm

en
t D

iv
is

io
n,

N
O

A
A

.

S

pr
dC

as
e

=
2

A
re

a
=

pi
 *

 (
1.

21
**

2.
0)

 *
 (

V
ol

um
eO

il*
*2

.0
 *

 G
ra

vi
ty

 *
 D

el
ta

R
ho

 *
 (

E
la

ps
ed

Ti
m

e*
*(

3.
0/

2.
0)

)

&

/ s
qr

t(
K

in
V

is
cW

at
er

))
**

(1
.0

/3
.0

)

if(

A
re

a
<

O
ilA

re
a)

th
en

A
re

a
=

O
ilA

re
a

en
d

if

!D

iff
us

io
n

ce
of

fic
ie

nt

D
iff

C
oe

f =
 ((

1.
21

**
2.

0)
/1

6.
0)

 *
 (

((
V

ol
um

eO
il*

*2
.0

 *
 G

ra
vi

ty
 *

 D
el

ta
R

ho
)

&

/ s
qr

t(
K

in
V

is
cW

at
er

))
**

(1
.0

/3
.0

))

&

*

(1
.0

/s
qr

t (
R

E
A

L(
E

la
ps

ed
Ti

m
e,

ki
nd

(1
))

))

D
iff

C
oe

f =
 D

iff
C

oe
f +

 (
0.

03
3

*
((

E
la

ps
ed

Ti
m

e)
**

0.
16

))

D
iff

V
el

oc
ity

 =
 s

qr
t(

(2
.0

 *
 D

iff
C

oe
f)

 /
ID

T
)

le
nR

 =
 s

qr
t(

A
re

a/
pi

)

!N

ew
R

ad
iu

s
of

 u
pd

at
ed

 A
re

a
of

 O
il

D
el

ta
R

=

le
nR

 -
sq

rt(
O

ilA
re

a/
pi

)

!N

ew
R

ad
iu

s
-

O
ld

R
ad

iu
s

C
oe

fR

=
D

el
ta

R
 /

le
nR

!D
el

ta
R

 /
N

ew
R

ad
iu

s
!

C

oe
fR

=

le
nR

 /
sq

rt
(O

ilA
re

a/
pi

)

!fr

ac
tio

na
l R

ad
iu

s
in

cr
ea

se

!

C
oe

fQ

=
0.

0

C

oe
fR

 =
 D

iff
V

el
oc

ity

O
ilA

re
a

=
A

re
a

!U

pd
at

e
ar

ea
 o

f o
il

!F

A
Y

 b
as

ed
 m

et
ho

d

C
A

S
E

 (
"C

O
N

C
A

W
")

!v

an
 O

ud
en

ho
ve

n,
 J

.,
D

ra
pe

r,
 V

.,
et

 a
l 1

98
3

!"
C

ha
ra

ct
er

is
tic

s
of

 p
et

ro
le

um
 a

nd
 it

s
be

ha
vi

or
 a

t s
ea

"

!C

O
N

C
A

W
E

 R
ep

or
t N

o.
8/

83
. D

en
 H

aa
g,

 N
ov

em
be

r
19

83
.

S
pr

dC
as

e
=

3

A

re
a2

 =
 p

i *
 (

0.
98

**
2.

0)
 *

 ((
D

el
ta

R
ho

 *
 G

ra
vi

ty
 *

 (
V

ol
um

eO
il*

*2
.0

))

&

/(
K

in
V

is
cW

at
er

**
0.

5)
)*

*(
1.

0/
3.

0)
 *

 (
E

la
ps

ed
Ti

m
e*

*0
.5

)

A

re
a3

 =
 p

i *
 (

1.
60

**
2.

0)
 *

 ((
(S

pr
ea

dC
oe

ff
*

10
**

-3
.0

)*
*2

.0
)

&

/ (

(R
ho

W
at

er
**

2.
0)

 *
 K

in
V

is
cW

at
er

))
**

0.
5

*(
E

la
ps

ed
Ti

m
e*

*1
.5

)

M

ax
A

re
a

=
10

**
5.

0
*

(V
ol

um
eO

il*
*0

.7
5)

A

re
a

=
A

re
a2

IF

 (
A

re
a2

 <
 A

re
a3

)
T

H
E

N

A

re
a

=
A

re
a3

IF
 (

A
re

a3
 >

 M
ax

A
re

a)
 T

H
E

N

A
re

a
=

M
ax

A
re

a

E
N

D
 IF

E

N
D

 IF

if(
A

re
a

<
O

ilA
re

a)
th

en

A

re
a

=
O

ilA
re

a

en

d
if

le
nR

 =

 s
qr

t(
A

re
a/

pi
)

Development of OILTRANS Model code

! DeltaR = lenR - sqrt(OilArea/pi) !NewRadius - OldRadius
! CoefR = DeltaR / lenR !DeltaR / NewRadius
 CoefR = lenR / sqrt(OilArea/pi) !fractional Radius increase
 CoefQ = 0.0
 OilArea = Area !Updated area of oil

 !Lehr based method
 CASE ("OILPOL") !GULFSPILL
 !OILPOL_2 solution - see OILPOL2.xls
 !Chao, X., Shankar, J., Wang, S. 2003
 !"Development and application of oil spill model for Singapore coastal waters"
 !Journal of Hydraulic Engineering 129:7 (2003) 495-503
 SprdCase = 4
 WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0))
 Area = 2270.0 * (DeltaRho * (RhoWater/RhoOil))**(2.0/3.0) * (VolumeOil * m32bbl)**(2.0/3.0) &
 * (ElapsedTime * sec2min)**(1.0/2.0) &
 + (40.0 * (DeltaRho * (RhoWater/RhoOil))**(1.0/3.0) &
 * (ElapsedTime * sec2min) * (WindSpeed * ms2kts)**(4.0/3.0))

 if(Area < OilArea)then
 Area = OilArea
 end if

 if(FirstAP(n))then
 lenQ1 = lenQ
 lenR1 = lenR
 end if

 lenQ = 53.76 * (DeltaRho * (RhoWater/RhoOil))**(1.0/3.0) *(VolumeOil * m32bbl)**(1.0/3.0) &
 * (ElapsedTime * sec2min)**(1.0/4.0)
 lenR = lenQ + 0.95 * (WindSpeed * ms2kts)**(4.0/3.0)*(ElapsedTime * sec2min)**(3.0/4.0)

 if(FirstAP(n))then
 lenQ1 = lenQ
 lenR1 = lenR
 end if

 CoefR = lenR / lenR1
 CoefQ = lenQ / lenQ1
 lenR1 = lenR
 lenQ1 = lenQ

 CASE DEFAULT
 WRITE(*,*)'Case not encoded'
 WRITE(*,*)'No SPREADING processes modelled'
 END SELECT

RETURN

END SUBROUTINE SpreadOptions

Subroutine EVAPORATE
!*****************************
!* Subroutine Evaporate *
!*****************************
SUBROUTINE Evaporate(ElapsedTime,FirstAP,RhoOil,AreaOil,ResinOil,AsphOil, MassSpill,MassEvap,WaterContent,MassOil)

USE PARAM_MOD, ONLY: WaterTemp,Uwind_10,Vwind_10,EvapOption,idt,VolumeSpill,Oil_Resin, Oil_Asph
IMPLICIT NONE

Development of OILTRANS Model code

!I/O variables
INTEGER, INTENT(IN):: ElapsedTime
LOGICAL, INTENT(IN):: FirstAP
double precision, intent(in):: MassSpill, RhoOil,AreaOil, WaterContent,MassOil
double precision, intent(inout):: resinoil, asphoil
double precision, intent(out):: MassEvap

!Local variables
DOUBLE PRECISION:: PercentEvap !percent of oil evaporated in timestep
DOUBLE PRECISION:: CumPercentEvap !cumulative percentage of oil evaporated to date
DOUBLE PRECISION:: PercentDist !percent of oil mass distilled at 180degC (FINGAS only)
INTEGER:: n !counter
DOUBLE PRECISION:: Mol(16) !molecular weight of pseudocomponent
DOUBLE PRECISION:: MolFrac(16) !molar fraction of pseudocomponent
DOUBLE PRECISION:: VolFrac(16) !volume fraction of pc
DOUBLE PRECISION:: AvgMW !average molecular weight
DOUBLE PRECISION:: Ke !mass transfer coefficient (m/s)
DOUBLE PRECISION:: VEvap(16) !volume of each pc evaporated
DOUBLE PRECISION:: dTdFe !rate of change of temperature versus fraction evaporated
DOUBLE PRECISION:: InitBP !initial boiling point
INTEGER:: nPC !number of pseudocomponent
DOUBLE PRECISION :: WindSpeed
double precision :: VolEvap

!save values on exit
SAVE:: CumPercentEvap, dTdFe, InitBP, nPC, PercentDist

IF (FirstAP) THEN
 CALL InitialEvap(dTdFe, InitBP, nPC)
 PercentEvap = 0.0
 CumPercentEvap = 0.0
 MassEvap = 0.0
 PercentDist = 20.0 !Alberta Sweet Mixed Blend (Fingas book p 219)
END IF

SELECT CASE (F_UpCase(EvapOption))

 CASE ("FINGAS")
 !Fingas, M. 1997
 !"The Evaporation of Oil Spills:
 !Prediction of equations using distillation data"
 !Arctic and Marine OilSpill Program Technical Seminar,
 !Environment Canada. 1997 Vol1:20 pp1-20

 !Assume Logarithmic (vast majority of oil types
 PercentEvap = ((0.165 * PercentDist) + (0.045 * (WaterTemp-15.0))) * log(REAL(ElapsedTime,KIND(1)) / 60.0)
 !!SquareRoot only applies to a few refined products -
 !!eqn below (may include later)
 !CumPercentEvap = ((0.0254 * PercentDist) + (0.01 * (WaterTemp- 5.0)))&
 ! * sqrt(ElapsedTime / 60.0)

 MassEvap = MassSpill * (PercentEvap / 100.0)
 ResinOil = ResinOil / (1.0 - (MassEvap/MassSpill)) !Increase in resin % (Assuming no evaporation)
 AsphOil = AsphOil / (1.0 - (MassEvap/MassSpill)) !Increase in asphaltene % (Assuming no evaporation)

! CASE ("PSEUDO")
! !ADIOS2
! DO n = 1, nPC
! Mol(n) = Vol(n) / Vbar(n) !moles in volume of pseudo component
! end do
!
! do n = 1, nPC

Development of OILTRANS Model code

! IF (Vol(n) == 0.0)THEN
! MolFrac(n) = 0.0
! VolFrac(n) = 0.0
! ELSE
! MolFrac(n) = Mol(n) / sum(Mol)
! VolFrac(n) = Vol(n) / sum(Vol)
! AvgMW = AvgMW + MolFrac(n)*MW(n)
! END IF
! END DO
!
! Ke = 0.0048 * WindSpeed**(7.0/9.0) * 1.3676 * (sqrt(0.018/AvgMW))**(2.0/3.0)) * (lenR*2.0)**(-1.0/9.0)
!
! DO n = 1, nPC
! VEvap(n) = (Ke * VolumeOil * VapP(n) * Vbar(n) * VolFrac(n)) / &
! (R * Slickthickness * (WaterTemp+273.15)) * idt
! IF (Vol(n) - VEvap(n) > 0) THEN
! Vol(n) = Vol(n) - VEvap(n)
! ELSE
! Vol(n) = 0.0
! END IF
! END DO
! VolumeEvap = VolumeEvap + sum(VEvap)
! MassEvap = VolumeEvap * RhoOil

 CASE ("MACKAY")
 !Stiver W., Mackay, D. 1984
 !"Evaporation rate of spills of hydrocarbons and petroleum mixtures"
 !Environmental Science and Technology, 1984. vol 18, pp 834-480

 WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0))
 Ke = 1.5E-3 * WindSpeed**0.78
 PercentEvap = ((Ke * AreaOil * idt) / VolumeSpill) * exp(6.3 - ((10.3 *(InitBP + (dTdFe*CumPercentEvap))) &
 / (WaterTemp + 273.15)))

 CumPercentEvap = CumPercentEvap + PercentEvap !Cumulative percentage evaporated
 VolEvap = VolumeSpill * CumPercentEvap !Total volume evaporated to date
 MassEvap = VolEvap * RhoOil !Total mass evaporated to date
 ResinOil = Oil_Resin / (1.0 - (MassEvap/MassSpill)) !Increase in resin % (Assuming no evaporation of resins)
 AsphOil = Oil_Asph / (1.0 - (MassEvap/MassSpill)) !Increase in asphaltene % (Assuming no evaporation of asphaltenes)

 CASE DEFAULT
! VolumeEvap = 0.0
 MassEvap = 0.0
 WRITE(*,*)'Case not encoded'
 WRITE(*,*)'No EVAPORATION processes modelled'

END SELECT

END SUBROUTINE Evaporate

Subroutine EMULSIFY
!*****************************
!* Subroutine Emulsify *
!*****************************
SUBROUTINE Emulsify(p,ElapsedTime,FirstAP,RhoOil,ViscOil,ResinOil,AsphOil, WaterContent, xviscemul)
!Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in
!Chpt. 10 of Oil Spill Science and Technology, 2011.
!Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0
USE PARAM_MOD, ONLY: Oil_Sat,idt,SigWaveHeight

Development of OILTRANS Model code

IMPLICIT NONE

!I/O variables
INTEGER, INTENT(IN):: ElapsedTime,p
double precision, intent(in):: RhoOil, ViscOil, ResinOil,AsphOil
double precision, intent(out):: WaterContent, xviscemul
logical, intent(in):: FirstAP(p)

!Local variables
DOUBLE PRECISION:: RelRhoOil !Relative density (decimal)
DOUBLE PRECISION:: D_t !transformed density
DOUBLE PRECISION:: V_t !transformed viscosity
DOUBLE PRECISION:: S_t !transformed saturates
DOUBLE PRECISION:: R_t !transformed resins
DOUBLE PRECISION:: A_t !transformed asphaltenes
DOUBLE PRECISION:: AR !asphaltene/resin ratio
DOUBLE PRECISION:: AR_t !transformed asphaltene/resin ratio
DOUBLE PRECISION:: StabilityC !StabilityC index
DOUBLE PRECISION:: Class(4,8) !Array to hold Fingas empricial values
DOUBLE PRECISION:: FormTime !Time for emulsion state to form (min)
DOUBLE PRECISION:: StartTime !Start time from which to begin timing emulsion formation, etc (sec)
DOUBLE PRECISION:: FingasDay !Seconds from StartTime to end of one day (including formation time)
DOUBLE PRECISION:: FingasWeek !as above to end of one week
DOUBLE PRECISION:: FingasYear !as above to end of one year
INTEGER:: ClassIndex !Class Index (1 - 4)
INTEGER:: StartClass !class index and integer
INTEGER::n !class index and integer
double precision, parameter:: eps = 1e-6

!save values on exit
SAVE:: ClassIndex, FormTime, StartClass, StartTime, FingasDay, FingasWeek, FingasYear

IF (FirstAP(p)) THEN
!Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in
!Chpt. 10 of Oil Spill Science and Technology, 2011.
!Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0
 ! | U E M S |
 Class = reshape((/ 0.06, 0.42, 0.64, 0.76, & ! DayWaterContent <- Figure 10.4
 0.06, 0.37, 0.32, 0.76, & ! WeekWaterContent <- Figure 10.4
 0.06, 0.37, 0.20, 0.68, & ! YearWaterContent <- Figure 10.4
 1.0, 1.9, 7.2, 405.0, & ! DayViscosityIncrease <-Table 10.4
 1.0, 1.9, 11.0,1054.0, & ! WeekViscosityIncrease <-Table 10.4
 1.0, 2.1, 32.0, 991.0, & ! YearViscosityIncrease <-Table 10.4
 0, 30.8, 47.0, 27.1, & ! FormTimeParamA <- Table 10.5
 0, 18300, 49100, 7520 /), & ! FormTimeParamB <- Table 10.5
 shape(Class))

 WaterContent = 0.0
 xViscEmul = 1.0
 ClassIndex = 0
 StartClass = 0
 StartTime = 0.0
END IF

IF(ClassIndex < 4) THEN !check until stable emulsion forms

 !Fingas,M.,2011, "Models for Water-in-Oil Emulsion Formation" in
 !Chpt. 10 of Oil Spill Science and Technology, 2011.
 !Gulf Professional Publishing, UK. ISBN:978-1-85617-943-0

 !Density transform (ranges checked)

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

R

el
R

ho
O

il
=

R
ho

O
il

/ 1
00

0.
0

IF

 (
ex

p(
R

el
R

ho
O

il)
 <

 2
.5

) T
H

E
N

D

_t
 =

 m
ax

(0
.0

1d
0,

 (
2.

5d
0

-
ex

p(
R

el
R

ho
O

il)
))

E
LS

E

D
_t

 =
 m

ax
(0

.0
1d

0,
 (

ex
p(

R
el

R
ho

O
il)

 -
 2

.5
d0

))

E

N
D

 IF

!V

is
co

si
ty

 tr
an

sf
or

m
 (

ra
ng

es
 c

he
ck

ed
)

IF

 (l
og

(V
is

cO
il)

 <
 5

.8
) T

H
E

N

V
_t

 =
 5

.8
 -

 lo
g(

V
is

cO
il)

E
LS

E

V
_t

 =
 lo

g(
V

is
cO

il)
 -

5.
8

!c
ha

ng
ed

 fr
om

 8
.7

 in
 te

xt

E

N
D

 IF

!S

at
ur

at
e

tra
ns

fo
rm

 (
ra

ng
es

 c
he

ck
ed

)

IF
 (

O
il_

S
at

 <
 4

5.
0)

 T
H

E
N

S

_t
 =

 4
5.

0
-

O
il_

S
at

E
LS

E

S
_t

 =
 m

ax
(e

ps
, O

il_
S

at
 -

 4
5.

0)

E

N
D

 IF

!R

es
in

 tr
an

sf
or

m
 (

ra
ng

es
 c

he
ck

ed
)

IF

 (
R

es
in

O
il

<
10

.0
) T

H
E

N

R
_t

 =
 m

ax
(0

.1
d0

, 1
0.

0
-

R
es

in
O

il)

E

LS
E

R

_t
 =

 m
ax

(0
.1

d0
, R

es
in

O
il

-
10

.0
)

E

N
D

 IF

!A

sp
ha

lte
ne

 tr
an

sf
or

m
 (

ra
ng

es
 c

he
ck

ed
)

IF

 (
A

sp
hO

il
<

4.
0)

 T
H

E
N

A

_t
 =

 4
.0

 -
 A

sp
hO

il

E
LS

E

A
_t

 =
 m

ax
(e

ps
, A

sp
hO

il
-

4.
0)

E
N

D
 IF

!A
/R

 r
at

io
 tr

an
sf

or
m

 (
ra

ng
es

 c
he

ck
ed

)

A
R

 =
 A

sp
hO

il
/ R

es
in

O
il

IF

 (
A

R
 <

 0
.6

) T
H

E
N

A

R
_t

 =
 m

ax
(0

.0
25

d0
, 0

.6
 -

 A
R

)

E
LS

E

A
R

_t
 =

 m
ax

(0
.0

25
d0

, A
R

 -
 0

.6
)

E

N
D

 IF

!c

al
cu

la
te

 s
ta

bi
lit

yC
 (

E
qn

 1
5)

S
ta

bi
lit

yC
 =

 1
2.

3
+

(0
.2

59
 *

 S
_t

)
- (

1.
60

1
*

R
_t

)
-

(1
7.

2
*

A
R

_t
)

&

-
(0

.5
 *

 (
V

_t
**

3.
0)

)
+

(0
.0

02
 *

 (
R

_t
**

3.
0)

)

&

+

(0
.0

01
 *

 (
A

_t
**

3.
0)

) +
 (

8.
51

 *
 (

A
R

_t
**

3.
0)

)

&

-

(1
.1

2
*

lo
g(

V
_t

))
 +

 (
0.

7
*

lo
g(

R
_t

))
 +

 (
2.

97
 *

 lo
g(

A
R

_t
))

&

+

(6
.0

E
-0

8
*

(e
xp

(V
_t

)*
*2

.0
))

 -
 (1

.9
6

*
(e

xp
(A

R
_t

)*
*2

.0
))

&

-

(4
.0

E
-0

6
*

(lo
g1

0(
D

_t
)/(

D
_t

**
2.

0)
))

&

-

(1
.5

E
-0

4
*

(lo
g1

0(
A

R
_t

)/
(A

R
_t

**
2.

0)
))

!d
et

er
m

in
e

em
ul

si
on

 s
ta

te
 b

as
ed

 o
n

st
ab

ili
ty

C
 (T

ab
le

 1
0.

3)

IF

(S
ta

bi
lit

yC
 >

=
2.

2
.A

N
D

. S
ta

bi
lit

yC
 <

=
15

) T
H

E
N

C

la
ss

In
de

x
=

4

!S

ta
bl

e

E
LS

E
IF

 (
S

ta
bi

lit
yC

 >
=

-1
2.

0
.A

N
D

. S
ta

bi
lit

yC
 <

=
-0

.7
)

T
H

E
N

C

la
ss

In
de

x
=

3

!M

es
os

ta
bl

e

E
LS

E
IF

 (
S

ta
bi

lit
yC

 >
=

-1
8.

3
.A

N
D

. S
ta

bi
lit

yC
 <

=
-9

.1
)

T
H

E
N

IF

(R
el

R
ho

O
il

>
0.

96
 .A

N
D

. V
is

cO
il

>
60

00
.0

) T
H

E
N

C
la

ss
In

de
x

=
2

!E

nt
ra

in
ed

E

N
D

 IF

E

LS
E

IF
 (

S
ta

bi
lit

yC
 >

=
-3

9.
1

.A
N

D
. S

ta
bi

lit
yC

 <
=

-7
.1

)
T

H
E

N

D
ev

el
op

m
en

t o
f O

IL
TR

A
N

S
M

od
el

 c
od

e

IF
 (

R
el

R
ho

O
il

<
0.

85
 .O

R
. R

el
R

ho
O

il
>

1.
0)

 T
H

E
N

IF
 (

V
is

cO
il

<
10

0
.O

R
. V

is
cO

il
>

80
00

00
) T

H
E

N

 IF
(A

sp
hO

il
<

1.
0

.O
R

. R
es

in
O

il
<

1.
0)

 T
H

E
N

C
la

ss
In

de
x

=
1

!U

ns
ta

bl
e

E
N

D
 IF

E
N

D
 IF

E

N
D

 IF

E

LS
E

w

rit
e(

*,
*)

'U
nr

es
ol

ve
d

E
m

ul
si

on
 C

la
ss

 -
as

su
m

e
U

N
S

T
A

B
LE

'

C

la
ss

In
de

x
=

1

E
N

D
 IF

!O
nl

y
up

da
te

 e
m

ul
si

on
 s

ta
te

 if
 p

ro
gr

es
si

ve
ly

 m
or

e
st

ab
le

 e
m

ul
si

on
s

fo
rm

IF
 (

C
la

ss
In

de
x

>
S

ta
rt

C
la

ss
) T

H
E

N

S
ta

rt
C

la
ss

 =
 C

la
ss

In
de

x

S

ta
rt

Ti
m

e
=

E
la

ps
ed

Ti
m

e

!d

et
er

m
in

e
fo

rm
at

io
n

tim
e

fo
r

em
ul

si
on

 s
ta

te

IF
 (

C
la

ss
In

de
x

>=
 2

)T
H

E
N

F
or

m
T

im
e

=
C

la
ss

(C
la

ss
In

de
x,

 7
)

+
(C

la
ss

(C
la

ss
In

de
x,

 8
)

/ (
(S

ig
W

av
eH

ei
gh

t*
10

0.
0)

**
1.

5)
)

!(
m

in
ut

es
)

E
LS

E

F

or
m

T
im

e
=

0.
0

E
N

D
 IF

!c

al
cu

la
te

 ti
m

es
 to

 e
nd

 o
f d

ay
, w

ee
k

an
d

ye
ar

!fo

r
Fi

ng
as

 v
al

ue
s

(f
ro

m
 T

ab
le

 1
0.

4)

F
in

ga
sD

ay
 =

 S
ta

rtT
im

e
+

(F
or

m
T

im
e

*
60

.0
)

+
(1

.0
 *

 8
64

00
.0

)

F

in
ga

sW
ee

k
=

S
ta

rtT
im

e
+

(F
or

m
T

im
e

*
60

.0
)

+
(7

.0
 *

 8
64

00
.0

)

F

in
ga

sY
ea

r
=

S
ta

rt
Ti

m
e

+
(F

or
m

T
im

e
*

60
.0

)
+

(3
65

.0
 *

 8
64

00
.0

)

E
N

D
 IF

 E

N
D

 IF

 !C
al

cu
la

te
 in

cr
em

en
ta

l i
nc

re
as

e
in

 v
is

co
si

ty
 a

nd
 w

at
er

 c
on

te
nt

 p
er

 D
T

 b
as

ed
 o

n
tim

es
 a

bo
ve

.
IF

 (
S

ta
rt

C
la

ss
 =

=
0)

 T
H

E
N

W
at

er
C

on
te

nt
 =

 W
at

er
C

on
te

nt

xV

is
cE

m
ul

 =
 1

.0

E
LS

E

IF

 (
E

la
ps

ed
Ti

m
e

<=
 F

in
ga

sD
ay

) T
H

E
N

!e
m

ul
si

on
 ti

m
e

<=
 F

or
m

T
im

e
+

1
D

ay

W
at

er
C

on
te

nt
=

m
in

(W
at

er
C

on
te

nt
 +

 (
(C

la
ss

(S
ta

rt
C

la
ss

, 1
) /

 (F
in

ga
sD

ay
-S

ta
rt

Ti
m

e)
)

*
ID

T
),C

la
ss

(S
ta

rt
C

la
ss

,1
))

xV

is
cE

m
ul

=

m
in

(x
V

is
cE

m
ul

 +
 (

((
C

la
ss

(S
ta

rt
C

la
ss

, 4
)

- 1
.0

)
/ (

Fi
ng

as
D

ay
-S

ta
rt

Ti
m

e)
)

 *
 ID

T
),

C
la

ss
(S

ta
rtC

la
ss

,4
))

E
LS

E
IF

 (
E

la
ps

ed
Ti

m
e

<=
 F

in
ga

sW
ee

k)
 T

H
E

N

!F
or

m
 T

im
e

+
1

D
ay

 <
=

em
ul

si
on

 ti
m

e
<=

 1
 W

ee
k

W
at

er
C

on
te

nt
=

m
ax

(W
at

er
C

on
te

nt
 +

 ((
(C

la
ss

(S
ta

rt
C

la
ss

, 2
) -

 C
la

ss
(S

ta
rt

C
la

ss
, 1

))
 /

 &

(F
in

ga
sW

ee
k-

Fi
ng

as
D

ay
))

 *
 ID

T
),

C
la

ss
(S

ta
rtC

la
ss

,2
))

xV

is
cE

m
ul

=

m
in

(x
V

is
cE

m
ul

 +
 (

((
C

la
ss

(S
ta

rt
C

la
ss

, 5
)

-
C

la
ss

(S
ta

rt
C

la
ss

, 4
))

 /
 &

(F

in
ga

sW
ee

k-
Fi

ng
as

D
ay

))
 *

 ID
T

),
C

la
ss

(S
ta

rtC
la

ss
,5

))

E

LS
E

IF
 (

E
la

ps
ed

Ti
m

e
<=

 F
in

ga
sY

ea
r)

 T
H

E
N

!e

m
ul

si
on

 ti
m

e
<=

 1
 Y

ea
r

(+
 F

or
m

T
im

e)

W
at

er
C

on
te

nt
=

m
ax

(W
at

er
C

on
te

nt
 +

 ((
(C

la
ss

(S
ta

rt
C

la
ss

, 3
) -

 C
la

ss
(S

ta
rt

C
la

ss
, 2

))
 /

 &

(F
in

ga
sY

ea
r-

Fi
ng

as
W

ee
k)

)
*

ID
T

),
C

la
ss

(S
ta

rtC
la

ss
,3

))

xV
is

cE
m

ul

=
m

in
(x

V
is

cE
m

ul
 +

 (
((

C
la

ss
(S

ta
rt

C
la

ss
, 6

)
-

C
la

ss
(S

ta
rt

C
la

ss
, 5

))
 /

 &

(F
in

ga
sY

ea
r-

Fi
ng

as
W

ee
k)

)
*

ID
T

),
C

la
ss

(S
ta

rtC
la

ss
,6

))

E

LS
E

W

at
er

C
on

te
nt

 =
 C

la
ss

(S
ta

rt
C

la
ss

,3
)

xV
is

cE
m

ul
 =

 C
la

ss
(S

ta
rt

C
la

ss
,6

)

E
N

D
 IF

E

N
D

 IF

 R
E

T
U

R
N

 E

N
D

 S
U

B
R

O
U

T
IN

E
 E

m
ul

si
fy

Development of OILTRANS Model code

Subroutine DISPERSE
!*****************************
!* Subroutine Disperse *
!*****************************
SUBROUTINE Disperse(n,ElapsedTime,FirstAP,AreaOil,ViscOil,RhoOil,pZ,MassOil,MassDisp)
!French-McKay, 2004
!"Oil Spill Impact Modelling: Development and Validation"
!Environmental Toxicology and Chemistry, Vol 23, No. 10, pp 2441-2456.
!after
!Delvigne, G., & Sweeney, C. 1988
!"Natural Dispersion of Oil"
!Oil and Chemical Pollution, Vol 4, pp 281-310

USE PARAM_MOD, ONLY: SigWaveHeight,SigWaveLength,SigWavePeriod,idt, &
 UWind_10,VWind_10,numpar,windwavemodel

IMPLICIT NONE

!I/O variables
INTEGER, INTENT(IN):: ElapsedTime,n
LOGICAL, INTENT(IN):: FirstAP(n)
double precision, intent(in):: AreaOil,ViscOil,RhoOil,MassOil
double precision, intent(inout):: MassDisp
DOUBLE PRECISION, DIMENSION(numpar), OPTIONAL, INTENT(INOUT) :: pZ

!Local variables
DOUBLE PRECISION:: Dbwe !dissipated breaking wave energy per unit area (J/m2)
DOUBLE PRECISION:: Hbreak !breaking wave height (m)
DOUBLE PRECISION:: Cstar !empirical entrainment constant
DOUBLE PRECISION:: FracWave !fraction of sea surface hit by breaking waves
DOUBLE PRECISION:: Oil_d50 !mean oil droplet diameter (um)
DOUBLE PRECISION:: DropDiam(10) !Do droplet diameter per size class (m)
DOUBLE PRECISION:: Qd(10) !Entrainment rate per size class (kg/m2s)
DOUBLE PRECISION:: Qdtotal !Total entrainment rate for all size classes
DOUBLE PRECISION:: DeltaDiam !oil droplet interval diameter (m)
DOUBLE PRECISION:: Dmin !minimum and maximum droplet diameter (m)
DOUBLE PRECISION:: Dmax minimum and maximum droplet diameter (m)
DOUBLE PRECISION:: WindSpeed
INTEGER:: i !droplet distribution array counter
DOUBLE PRECISION, PARAMETER:: Uth = 6.0 !Threshold wind speed for the onset of breaking waves (m/s)
DOUBLE PRECISION, PARAMETER:: Ewave = 5000.0 !mean energy dissipation rate per unit volume (J/m3-s) ranges between 1,000 and 10,000 (J/m3.s) - See Delvigne (1988)
DOUBLE PRECISION, PARAMETER:: FracOil = 1.0 !fraction of sea surface covered by oil.
double precision :: pMass
integer:: pQd,pN
double precision:: ran,waveheight,waveperiod
logical :: found

IF (FirstAP(n)) THEN
 MassDisp = 0.0 !initialise mass dispersed
END IF

!Calculate empirical entrainment constant Cstar
IF (ViscOil < 132.0) THEN
 Cstar = exp((-0.1023 * log(ViscOil)) + 7.572)
ELSE
 Cstar = exp((-1.8927 * log(ViscOil)) + 16.313)
END IF

Development of OILTRANS Model code

!calculate windspeed
WindSpeed = sqrt((Uwind_10**2.0) + (Vwind_10**2.0))

!determine waveheight and wave period
if(windwavemodel)then
 waveheight = SigWaveHeight !SWAN model output
 waveperiod = SigWavePeriod
else
 waveheight = 0.243 * (WindSpeed)**2.0 / Gravity !CERC formulation
 waveperiod = 8.13 * WindSpeed / gravity
end if

!calculate breaking wave height
Hbreak = (1.0/sqrt(2.0)) * waveheight

!Calculate dissipated breaking wave energy (J/m2)
Dbwe = 0.0034 * RhoWater * Gravity * (Hbreak**2.0)

!Calculate fraction of sea surface hit by breaking waves
IF (WindSpeed <= Uth) THEN
 FracWave = 3E-06 * (WindSpeed**3.5 / WavePeriod)
ELSE
 FracWave = 0.032 * ((WindSpeed - Uth) / WavePeriod)
END IF

!Calculate mean oil droplet diameter (um),
!minimum radius (m) and maximum radius (m)
Oil_d50 = 1818.0 * (Ewave**-0.5) * (ViscOil**0.34) !based on viscosity
Dmin = 0.1 * Oil_d50 * 1E-06 convert from micrometers to meters)
Dmax = Oil_d50 * 1E-06 !(convert from micrometers to meters)

!write(*,*)oil_d50,rmin,rmax
!Construct droplet size distribution
!Adopt 5No. size classes between Rmin and Rmax,
!equally spaced on diameter
DeltaDiam = (Dmax - Dmin) / 5.0

!initialise total entrainment rate every timestep
Qdtotal = 0.0

DO i = 1, 5
 if(DropDiam(i) < 70e-6)then !70um
 !for each droplet interval, calculate centred droplet diameter, Do
 DropDiam(i) = ((2.0 * Rmin) + (0.5 * DeltaDiam)) + (DeltaDiam * (i-1))
 Qd(i) = Cstar * (Dbwe**0.57) * FracOil * FracWave * (DropDiam(i)**0.7) * DeltaDiam !(kg/m2s)
 else
 Qd(i) = 0.0
 end if
 !sum over all droplet classes for total entrainment rate
 Qdtotal = Qdtotal + Qd(i)
END DO

!calculate mass dispered (kg) and volume dispersed (m3)
MassDisp = MassDisp + (Qdtotal * AreaOil * idt)

return

END SUBROUTINE Disperse
�

Development of OILTRANS Model code

Subroutine DENSITY
!*****************************
!* Subroutine Density *
!*****************************
SUBROUTINE Density(RhoOil,MassEvap,MassSpill,WaterContent,DeltaRho)
!Buchanan, I. 1988
!"Methods for predicting the physical changes of oil spilled at sea"
!Oil and Chemical pollution vol 4(4) pp311-328
USE PARAM_MOD, ONLY: WaterTemp,Evaporation,Emulsification,Oil_Dens, Oil_Dens_RefT

IMPLICIT NONE

double precision, intent(in)::MassEvap,MassSpill,WaterContent
double precision, intent(inout):: RhoOil
double precision, intent(out):: DeltaRho

!First re-calculate RhoOil based on temperature correction.
RhoOil = Oil_Dens * (1.0 - CDensT * ((WaterTemp + 273.15) - Oil_Dens_RefT)) !actual density of spilled oil at ocean temperature (kg/m3)

!Check if Evaporation enabled
!- if so include Evap effect on RhoOil already calculated
IF (Evaporation) THEN
 RhoOil = RhoOil * (1.0 + CDensE * (MassEvap / MassSpill))
END IF

!Check if Emulsification enabled
!- if so include Emuls effect on RhoOil already calculated
IF (Emulsification) THEN
 RhoOil = (WaterContent * RhoWater) + (RhoOil * (1.0-WaterContent))
END IF

DeltaRho = (RhoWater - RhoOil) / RhoWater

RETURN

END SUBROUTINE Density

Subroutine VISCOSITY
!*******************************
!* Subroutine Viscosity *
!*******************************
SUBROUTINE Viscosity(ViscOil, RhoOil, MassEvap, MassSpill, xviscemul)

USE PARAM_MOD, ONLY: Dyn_Visc,Kin_Visc,WaterTemp,Dyn_Visc_RefT, Kin_Visc_RefT,Evaporation,Emulsification

IMPLICIT NONE

double precision, intent(in):: RhoOil, MassEvap,MassSpill,xviscemul
double precision, intent(inout):: ViscOil

!NewViscosity = RefViscosity * exp(dViscTemp + dViscEvap) * xViscEmul
! = RefViscosity * exp(dViscTemp) * exp(dViscEvap) * xViscEmul
 IF (Dyn_Visc > 0.0) THEN
 ViscOil = 1000.0 * Dyn_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Dyn_Visc_RefT))) !Dynamic (kg/ms -> cP)
 ELSE
 ViscOil = 1000.0 * Kin_Visc * exp(ViscCt * ((1.0/(WaterTemp+273.15)) - (1.0/Kin_Visc_RefT))) !Kinematic (m2/s -> cSt)
 ViscOil = ViscOil * RhoOil !Dynamic (cP)
END IF

Development of OILTRANS Model code

IF (Evaporation) THEN !(Mackay,1980)
 ViscOil = ViscOil * exp((Evap_C4 * (MassEvap / MassSpill)))
END IF

IF (Emulsification) THEN !(Fingas 2011)
 ViscOil = ViscOil * xViscEmul
END IF

RETURN

END SUBROUTINE Viscosity

Subroutine DISSOLUTION
!********************************
!* Subroutine Dissolution *
!********************************
SUBROUTINE Dissolution(ElapsedTime,WaterContent,AreaOil,MassDiss)
!Cohen, Y., D. Mackay and W.Y. Shiu, (1980):
!"Mass Transfer Rates Between Oil Slicks and Water".
!The Canadian Journal of Chemical Engineering. Vol. 58.
USE PARAM_MOD, ONLY: idt

IMPLICIT NONE

INTEGER, INTENT(IN):: ElapsedTime
double precision, intent(in):: WaterContent,AreaOil
Double precision, INTENT(INOUT):: MassDiss

DOUBLE PRECISION, parameter:: InitSol = 0.03 !need to change this if data become available
DOUBLE PRECISION, parameter:: DecayRate = 0.1 !need to change this if data become available
DOUBLE PRECISION, parameter:: MassTranCoeff = 0.01 !(m/hr) !need to change this if data become available
DOUBLE PRECISION:: Sol

Sol = InitSol * exp(-DecayRate * (ElapsedTime/3600.0)) !convert ElaspedTime from seconds to hours
MassDiss = MassDiss + (MassTranCoeff/3600.0) * (1.0-WaterContent) * &
 AreaOil * Sol * idt
RETURN

END SUBROUTINE Dissolution

